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42 H. TAMVAKIS

5. Q -> S E —> Q->0 WITH E FLAT

Throughout this section we will assume that the hermitian vector bundle
Ë is flat, i.e. that Ke 0. As before, the metrics hs and hg will be induced

k
x

from the metric on E. Define the harmonic numbers ELk E-,w. 0.
i= 1

Let À be a partition of k (we denote this by X E k). Recall that the

polynomials {p\ : À h k} form a Q-basis for the vector space of symmetric
homogeneous polynomials in x\ s..., xn of degree k. The following result

computes the Bott-Chern form corresponding to any such invariant polynomial :

THEOREM 3. The Bott-Chern class pX(£) in A(X) is the class of

(i) kHk-ipk-i(Q), if A k =* (£, 0,0,..., 0)

(ii) 0, otherwise.

Proof Let us first compute pk(t) for pk(A) Tr(Ak). Since KE 0, the

deformed matrix K(u) (1 — u)Ks@q where I —— 1
• Since

Ks 0

0 kQ

Jo u Jo t - 1

we obtain

Pk(I) -Hk-ip'kiKseQ-Jr)-mk-Tr(Ä*-1)

Now since_ft(5 ® Q) -pk(E)isexact, 0 and pk(S ®
pk{S) + pk{Q), we conclude that pk(S) —pk(Q) in A(X), for each k ^ 1.

This proves (i).

Let À (Ai, À2,..., Am) be a partition (m ^ 2). Proposition 1 implies
that

pl(Ë) pf{ (I)p\2 • • • pXm (5®ß).

But p\{(E) is a closed form (by (i)), and p\2 • • •p\m(S0 Q) is an exact form.

Thus p\(E) is exact, and so vanishes in A(X).

It follows from Theorem 3 that for any f G I(n), the Bott-Chern form </>(£)

is a linear combination of homogeneous components of the Chern character

form ch(Q). In [Ma], Theorem 3.4.1 we find the calculation
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k-1
_

(4) ck(E) Hk„1^2 i _ 1 _i(0
1=0

for the Chern forms c* Our result gives the following

Proposition 3. c*(£)

Prop/! By Newton's identity (2) we have

(5) Pk ~ cipk-t + c2pk-% h (-1 )kkck 0

Reasoning as in Theorem 3, we see that if </>jand ip are two^homogeneous

invariant polynomials of positive degree, then <//(£) 0 in A(X). Thus (5)

gives cifc(£) -— Pk& (-lf~l7~(>k-\Pk-\(Q)' D

Remark. The result of Proposition 3 agrees with (4), i.e. (—1)V*(Ô) —

k __iCi(S)Ck-i(Q) in MX). To see this, let h(t) J]c/0Sy, 9(f) Y,cj(Q)tj»
;=o

_ _
and /(f) JfiCiiS)?. Then /z(%(f) 1 in A(X)[f], and /(f) f/z'(f).

Choose formal variables and set q(S) e/xi...., a>), so that

äw=ri(i+x<*ti •Then =£**<* n(i+^ -Thus
a ex. ß

/VA /A- —
Af) _ ^2-~ hit) f'1 +xat

r~Y, TT71r ~ Z!(_1W =r
a a OLji i

r+y2(-i}Wô)C
i

Comparing coefficients of tk on both sides gives the result.

We can use Theorem 3 to calculate /(£) for / G /(n/ : it is enough to
find the coefficient of the power sum pk when / is expressed as a linear
combination of {p\}x\-k in A(n, Q). For example, we have

COROLLARY 2. ch(E) — ftkchk(Q), where chk denotes the k-th
k

homogeneous component of the Chern character form.
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COROLLARY 3. Let X be a partition of k and s\ the corresponding Schur

polynomial in A(w, Q). Then s\(fL) 0 unless X is a hook X1 — (£1,1,..., 1),

in which case s\i(E) (— l)k~lHk-\Pk-\(Q)

Proof The proof is based on the Frobenius formula

JA ~

where (a) denotes the partition of k determined by the cycle structure of a
(cf. [M], §1.7). By the above remark, xa((12
Using the combinatorial rule for computing %a found in [M], p. 117,

Example 5, we obtain

f (— \)k~\ if À À' is a hook
Xa((12 .k)) —I ^ Qtherwise

The most natural instance of a sequence £ with Ë flat is the classifying

sequence over the Grassmannian G(r, n). As we shall see in §8, the calculation
of Bott-Chern forms for this sequence leads to a presentation of the Arakelov
Chow ring of the arithmetic Grassmannian over SpecZ.

6. Calculations when E is projectively flat

We will now generalize the results of the last section to the case where

E is projectively flat, i.e. the curvature matrix Ke of Ë is a multiple of the

identity matrix : KE u Idn. This is true if E L0W for some hermitian line
bundle L, with to ci(L) the first Chern form of L.

The Bott-Chern forms (for the induced metrics) are always closed in this

case as well, and will be expressed in terms of characteristic classes of the

bundles involved. However this seems to be the most general case where this

phenomenon occurs.

The key observation is that for projectively flat bundles, the curvature
matrix KE uldn in any local trivialization. Thus we have

(1 — u)Ks + uuoldy 0

0 (1 — u)Kq T Uüü Ids

where s n — r denotes the rank of Q. Now Theorem 2 gives


	5. $0 \rightarrow \bar{S} \rightarrow \bar{E} \rightarrow \bar{Q} \rightarrow 0$ WITH $\bar{E}$ FLAT

