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42 H. TAMVAKIS
5. 0SS —E—Q—0 WITH E FLAT

Throughout this section we will assume that the hermitian vector bundle
E is flat, i.e. that Kz = 0. As before, the metrics hg and ho will be induced

k
. , 1
from the metric on E. Define the harmonic numbers H; = E —, Ho =0.
i
i=1

Let X\ be a partition of & (we denote this by A - k). Recall that the
polynomials {py : A+ k} form a Q-basis for the vector space of symmetric
homogeneous polynomials in xi,...,x, of degree k. The following result
computes the Bott-Chern form corresponding to any such invariant polynomial :

THEOREM 3. The Bott-Chern class px(E) in A(X) is the class of
(1) ka—lpk—l(é)) lf A=k= (k7 070: < o 70)

(11) O, otherwise.

Proof Let us first compute p(€) for pi(A) = Tr(A*). Since Kz = 0, the

Ks| O
deformed matrix K(u) = (1 — u)Ksgp, Where Kgppo = > . Since
0 | Ko

1 k—1 1 k-1
1 — —1 7 —1
/ ( “) du = ——/ dt = —Hi_1,
0 u 0 r—1

(&) = —Hi_ 1P (Ksgo; Jy) = —kHi—1 Tr(K§ ) = —kHi—1px—1(S) .

we obtain

Now since pu(SER Q) — pi(E) is exact, pp(E) = 0 and p(SEPO) =
21(S) + p(0), we conclude that py(S) = —pu(Q) in A(X), for each k > 1.
This proves (1). ’

Let A = (A1, A2,..., A\n) be a partition (m > 2). Proposition 1 implies
that

Px(E€) =P, Epx, - P2 SD D).

But px (€) is a closed form (by (i), and py, - - - p,.(SED Q) is an exact form.
Thus px(€) is exact, and so vanishes in A(X). [

It follows from Theorem 3 that for any ¢ € I(n), the Bott-Chern form 5(—8—)
is a linear combination of homogeneous components of the Chern character
form ch(Q). In [Ma], Theorem 3.4.1 we find the calculation
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k—1

(4) &) = Himr Y ici(S)ck-1-1(Q)

i=0

for the Chern forms ¢. Our result gives the following

PROPOSITION 3.  Gi(€) = (=D "Hy_1pr—1(0)-

Proof. By Newton’s identity (2) we have
(5) P — Cipi—1 + Capia — -+ + (= D'kG = 0.

Reasoning as in Theorem 3, we see that if ¢ and ¢ are two homogeneous
invariant polynomials of positive degree, then qbz/)(E) =0 in A(X) Thus (5)

( )k 1
. &) = )" " Hip1 (@), O

gives (&) =

REMARK. The result of Proposition 3 agrees with (4), i.e. (—l)kpk(@ =
k

Z ic:(S)cr_i(0) in A(X). To see this, let A®¥) = . ci(S)t', g(t) = Y ¢;(OF,
i=0
and f(f) = S iciS)f. Then h(t)g(r) = 1 in AX)[A, and f(1) = th'(1).

Choose formal variables {x,}icag, and set ¢;(S) = ei(xy,...,x,), so that
h(t) = H(1 +xo0). Then f(t) = » txg | [ (1 +xp2). Thus
o BF#a

@) Xol
g0 =35 ZHXQ

—r— ; Tl ;<—1>fx;r" =r— Z(—l)l’pi@)f

=r+y DpOr.

Comparing coefficients of ¥ on both sides gives the result.

We can use Theorem 3 to calculate Zp’(E) for ¢ € I(n); : it is enough to
find the coefficient of the power sum p, when ¢ is expressed as a linear
combination of {py}irr in A(n, Q). For example, we have

COROLLARY 2. é?z(_g) = Zchhk(Q), where chy denotes the k-th

k
homogeneous component of the Chern character form.
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COROLLARY 3. Let A be a partition of k and s the corresponding Schur
polynomial in A(n,g). Then §3(&) = 0 unless X is a hook X = (i,1,1,...,1),
in which case s (&) = (=D "Hi_1pr—1(0).

Proof. The proof is based on the Frobenius formula

1
Sx = Z XA (0)P(o)

kl
oES,

where (o) denotes the partition of k determined by the cycle structure of o
(cf. [M], §1.7). By the above remark, $x(&) = x»((12...k))Hk—1px—1(Q).
Using the combinatorial rule for computing XA found in [M], p. 117,
Example 5, we obtain

(—D*  if A\ = M is a hook

12... k) =
XA (( ) { 0, otherwise . L

The most natural instance of a sequence & with E flat is the classifying |
sequence over the Grassmannian G(r,n). As we shall see in §8, the calculation
of Bott-Chern forms for this sequence leads to a presentation of the Arakelov
Chow ring of the arithmetic Grassmannian over SpecZ.

6. CALCULATIONS WHEN £ IS PROJECTIVELY FLAT

We will now generalize the results of the last section to the case where |
E is projectively flat, i.e. the curvature matrix Kr of E is a multiple of the
identity matrix: Kr = wld,. This is true if £ = L®" for some hermitian line
bundle L, with w = c;(L) the first Chern form of L.

The Bott-Chern forms (for the induced metrics) are always$ closed in this
case as well, and will be expressed in terms of characteristic classes of the |
bundles involved. However this seems to be the most general case where this
phenomenon occurs.

The key observation is that for projectively flat bundles, the curvature
matrix Kg = wld, in any local trivialization. Thus we have

(1 —wKs + uwld, 0
0 (1 w)Kg + uwId,

K(u) =

where s = n — r denotes the rank of Q. Now Theorem 2 gives
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