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4. CALCULATING BOTT-CHERN FORMS

In this section we will consider an exact sequence
E:0—-8S—-E—-Q0—0,

where the metrics on § and O are induced from the metric on E. Let
r, n be the ranks of the bundles § and E. Let ¢ € I(n) be homogeneous of
degree k. We will formulate a theorem for calculating the Bott-Chern form
&Z(E). This result follows from the work of Bott-Chern, Cowen, Bismut and
Gillet-Soulé.

Let ¢’ be defined as in §2. For any two matrices A,B € M,,(C) set

k
$AB) =) ¢'(AA,...,ABy,A,.. . A,
i=1

where the index i means that B is in the i-th position.

Choose a local orthonormal frame s = (sq,s,...,s,) of E such that the
first » elements generate S, and let K(S), K(E) and K(Q) be the curvature
matrices of S, Q and E with respect to s. Let Kg = 5-K(S), Kz = - K(E)
and Kg = 5-K(Q). The matrix Kz has the form

K1 | Kz
K> | K

Kr =

where Kj; is an r X r submatrix. Also consider the matrices

K¢ | O Id. | 0
Ko = and J, =
K21 KQ 010
Let u be a formal variable and K(u) = uKp + (I — uwKy. Finally, let
¢'(u) = ¢/ (K(u);J,). We then have the following

THEOREM 2.

L TP
3) 3E) = / qb(u)uqb(O) du.
0

Proof.  We prove that ¢(€) as defined above satisfies axioms (i)-(iii) of
Theorem 1. The main step is the first axiom: this was essentially done in
[BC] §4, when ¢ = c¢ is the total Chern class. In the form (3) (again for the
total Chern class), the equation was given by Cowen in [C1] and [C2], while
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simplifying Bott and Chern’s proof. We follow both sources in sketching a
proof of this more general result.

Let h and hgy denote the metrics on E and Q respectively. Define
the orthogonal projections Py : E — § and P, : E — Q and put
h,(v,v") = uh(Pyv, P\v") + h(Pyv,Pyv") for v,v' € E, and 0 < u < 1.
Then h, is a hermitian norm, A; = h and h, — hy as u — 0. Let K(E,h,)
be the curvature matrix of (E, h,) relative to the holomorphic frame s defined
above. Proposition 3.1 of [C2] proves that #K(E ,hy,) = K(u). It follows from
Proposition 3.28 of [BC] that for 0 < ¢ < 1,

1 / .
S(E, h)) — (E, h) = dd* / ¢ (K(;‘)’Jf) du.

If we could set r = 0 we would be done; however, the integral will not be
convergent in general. Note that K(u) = Ky+uK;, where K; € Al! (X , End(E))
is independent of u. Therefore it will suffice to show that ¢'(Ky;J,) is a closed
form, so that it can be deleted from the integral. For this we may assume that
¢ = px 1s a product of power sums, A = (A, Ap,...,\,) a partition. Then

PAKoiJp) = 3 Tr(Ks) [ (Tr(Ks) + Tr (k) ™

i=1 j#i
= pa-1S) [[prS e 0
i=1 i

is certainly a closed form.
This proves axioms (1) and (ii1); axiom (ii) is easily checked as well. [

REMARK. A similar deformation to the one in [C2] was used by Deligne
in [D], 5.11 for a calculation involving the Chern character form. Special
cases of Theorem 2 have been used in the literature before, see for example
[GS2] Prop. 5.3, [GSZ] 2.2.3 and [Ma] Theorem 3.3.1.

We deduce some simple but useful calculations :

COROLLARY 1.
@) c&(€) =0 forall k> 1 and Gu(€) =0 for all m > 1kE.
(0) 52(8) =2(TrKy1 — 1(5)) and G(€) = ¢(5) — TrKy;.
Proof. (a) cll(u) is independent of u; hence ¢;(€) = 0. The result for

higher powers of ¢; follows from Proposition 1. In addition, ¢,,(§) = 0 for
m > tkE is an immediate consequence of the definition.
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(b) Using the bilinear form p5 described previously, we find
pi(w) = 2(uTr Ky + (1 — u)ci(S)), so

u

5E) = 2/1 uTrKy + (1 — w1 (S) — c1(S) "
0

= 2(TI‘K11 - C](g)) .

To calculate &5(&), use the identity 2¢o = ¢? —po. [

Corollary 1(b) agrees with an important calculation of Deligne’s in [D],
10.1, which we now describe: Using the C* splitting of &, we can write
the O operator for E in matrix form:

Op = <605 g ) . for some o € A»' (X,Hom(Q,)) .
0

Let o € AY%(X,Hom(S,Q)) be the transpose of «, defined using complex

conjugation of forms and the metrics hs and hgy. If V is the induced
connection on Hom(Q, S), we can write

AVASLYY

—Voig* t Ko — s=a*a

K¢ — s-aa*
2
Kr = T

Thus Corollary 1(b) implies that

~/C * 1 *
C2(8) — ——% TI'(OZO( ) = 5_’]1'_1 TI'(O{ Oé),

and we have recovered Deligne’s result. In this form the calculation was used
by Moriwaki and Soulé to obtain a Bogomolov-Gieseker type inequality and
a Kodaira vanishing theorem on arithmetic surfaces, respectively (see [Mo]
and [S]).

The calculation of c¢; shows that in general Bott-Chern forms are not
closed. In fact, calculating c¢; for k > 3 leads to much more complicated
formulas, involving traces of products of curvature matrices, for which a clear
geometric interpretation is lacking (unlike the matrix a above, whose negative
transpose —a* is the second fundamental form of €). In the next two sections
we shall see that when E is a projectively flat bundle, the Bott-Chern forms
are closed and can be calculated explicitly for any ¢ € I(n).
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