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by the power sum forms in the results ; to our knowledge this phenomenon
has not been observed before. The combinatorial identities involving harmonic

numbers that we encounter are also interesting. Sections 2-6 contain results

in hermitian complex geometry and may be read without prior knowledge of
Arakelov theory. §8 applies our calculations to obtain a presentation of the

Arakelov Chow ring of the arithmetic Grassmannian.

This should be regarded as a companion paper to [T] ; both papers will be

part of the author's 1997 University of Chicago thesis. I wish to thank my
advisor William Fulton for many useful conversations and exchanges of ideas.

2. Invariant and symmetric functions

The symmetric group Sn acts on the polynomial ring Z[jci,jc2, •. ,Xn] by
permuting the variables, and the ring of invariants A(ri) Z[xux2i... ,xn]s" is
the ring of symmetric polynomials. For B Q or C, let A(n,B) A(n)®zB.

Let e]fx\%... ,xn) be the &-th elementary symmetric polynomial in the
variables x\ xn and Pk(x\,.... xn) the k-th power sum. The

i
fundamental theorem on symmetric functions states that A(n) Z[e\,..., en\
and that éq. en are algebraically independent. For A a partition, i.e. a

decreasing sequence Àj ^ A2 ^ ^ Am of nonnegative integers, define
777

Pa "= IJpA'. is wel1 known that the p\ 's form an additive Q-basis for
7=1

the ring of symmetric polynomials (cf. [M], §1.2). The two bases are related
by Newton's identity:

Pk ~ ZlPk-l *r eiPk-2 — ' • • + (—1 )kkeji 0

Another important set of symmetric functions related to the cohomology
ring of grassmannians are the Schur polynomials. For a partition A as above,
the Schur polynomial s\ is defined by

sx(xu ,X„)~ detfcAi+"_,)KUOl,

where A (x, ~ x,) is the Vandermonde determinant. The ,s> for all

A of length m <: 11 form a Z-basis of A (cf. [M], §1.3).
Let C|Ty] (1 ^ i.jn̂)bethe coordinate ring of the space M„(C)

of n x n matrices. GL„(C)acts on matrices by conjugation, and we let
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I(n) C|Ty]GL/î(C) denote the corresponding graded ring of invariants. There is

an isomorphism r : I(ri) — A(n, C) given by evaluating an invariant polynomial
0 on the diagonal matrix diag (x\,..., xn). We will often identify 0 with the the

symmetric polynomial r(0). We will need to consider invariant polynomials
with rational coefficients ; let I(n, Q) ~ Q[jti X2,. •., xn]Sn be the corresponding
ring.

Given 0 G I(ri)k, let qid be a &-multilinear form on Mn(C) such that

4>'(gAi g~\.. .,gAkg~x)cf>'(Au.

for g G GL(tî, C) and 0(A) 0'(A, A,..., A). Such forms are most easily
constructed for the power sums p\ by setting

p'jSA1^2, • • • -Ak) Tr(AiA2 • • • Ak).

For px we can take p'x - Since the px's are a basis of A(n,Q), it
follows that one can use the above constructions to find multilinear forms 0'
for any 0 G I(n)k.

An explicit formula for 0' is given by polarizing 0 :

& ^

07(Ai ,Afc) (— 1 )70(A/j + + Ai.).
7=1

Although above formula for 0' is symmetric in Aj ,A^, this property is

not needed for the applications that follow.

3. Hermitian differential geometry

Let X be a complex manifold, E a rank n holomorphic vector bundle

over X. Denote by Ak(X,E) the C°° sections of AkT*X®E, where T*X
denotes the cotangent bundle of X. In particular Ak(X) is the space of
smooth complex k-forms on X. Let Ap>q(X) the space of smooth complex
forms of type (p,q) on X and A(X) := 0pA/?,/?(X). The decomposition
Al(X,E) A1,0(X,F)0Ao,1(X,E) induces a decomposition D D1,0 +D0'1
of each connection D on E. Let d — d + d and dc — (d — <9)/(47n).

Assume now that E is equipped with a hermitian metric h. The pair
(E, h) is called a hermitian vector bundle. The metric h induces a canonical

connection D — D(h) such that D0'1 8e and D is unitary, i.e.

dh(s, 0 /z(Ds-, 0 + Dt), for all s, t G A°(X, £).
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