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Par conséquent, le degré h\o' —> P1 est au moins égal à 2. La restriction de

h à D' aura au moins une valeur critique distincte de oo (grâce au théorème

de Hurwitz). Par conséquent SD> contient au moins une valeur distincte de

oo et l'on conclut comme précédemment. Fin de la preuve du théorème 7.3.

Remarques finales.
1. La preuve du théorème 7.3 montre clairement que si / n'est pas à

singularité isolée à l'origine, aucun jet n'est suffisant (pour r fini). En

effet, choisissons un point de contact de la transformée stricte de / 0 avec

7T_
1

(0) où cette transformée stricte n'est pas réduite.

Appliquons le lemme 6.1 pour g l(x,y)N avec N grand et h — ^.
On voit que l'on a m > 1 car / n'est pas réduite. La remarque qui suit

le lemme 6.1 indique que la composante dicritique créée par l'utilisation du

lemme 6.1 n'est pas bonne. Il est facile de déterminer grâce au lemme 6.1

quel est le membre générique du pinceau ainsi créé (il dépend de l'entier N).
Bien sûr, ce membre générique est à singularité isolée. Ceci donne un autre

point de vue sur les résultats de H. Maugendre dans sa thèse. (Voir [Mau].)

2. Soit /(xy) 0 l'équation d'une droite transverse à /(xy) 0. La

preuve du théorème 7.3 montre que le jet /r)(/) est topologiquement suffisant
si et seulement si / — À/r+1 est topologiquement équivalent à / pour tout
À G C Comparer avec B. Teissier dans [Tei2] p. 280.

§8. Un petit historique de la C°-suffisance

Le concept de C°-suffisance apparaît dans l'article de R. Thom au colloque
de Bombay. (Voir [Thom].) Le rôle de l'inégalité de Lojasiewicz y est mis en
évidence.

Au cours des années 1970-80, plusieurs auteurs (voir, entre autres, [Kuo2],
[Bo-Lo], [Ch-Lu]) ont établi que Suff(/) est donné par l'inégalité de

Lojasiewicz de la façon suivante. On considère les exposants 9 > 0 tels
qu'il existe un voisinage U de l'origine et une constante C > 0 tels que l'on
ait: |grad f(z)\ > C\zf pour tout z G U. La borne inférieure des 9 ayant
cette propriété est Vexposant de Lojasiewicz Loja(/). Le résultat obtenu par
plusieurs auteurs est que Suff(/) [Loja(/)] + 1, où [x] désigne la partie
entière de x.

Dans [Kuo-Lu] T.C. Kuo et Y.C. Lu ont donné une façon explicite de
calculer 1 exposant de Lojasiewicz pour les germes de courbes planes, en
utilisant les développements de Puiseux des branches de / 0.



378 LÊ D.T. ET C. WEBER

En 1975, B. Teissier a démontré (pour n quelconque) que Loja(/) est

égal au maximum des invariants polaires ~ selon sa définition des invariants

polaires. Voir [Teil] p. 626. A la même époque, il démontre directement que

Suff(/) max | ^ |. Voir [Tei2] p. 280. Dans [Mer] M. Merle a explicité

une façon de calculer les invariants polaires pour les branches de courbes

planes.

Dans [L-M-Wl] et [L-M-W2] nous avons donné avec F. Michel une

interprétation topologique des invariants polaires des courbes planes et une

façon simple de les calculer à l'aide des quotients d'Hironaka (appelés alors

coefficients d'insertion) de la résolution minimale de /. Dans le présent travail,
nous avons donné une démonstration directe (pour les courbes planes) du fait

que Suff(/) se calcule à partir des quotients d'Hironaka.
D'autres points de vue sur Suff(/) pour les courbes planes sont exprimés

dans [B.Li] et [Cos].

Finalement, au chapitre 7 de son livre [Cas], E. Casas-Alvero détermine

également le degré de C°-suffisance d'un germe de courbe plane par le biais
des pinceaux. Son étude est basée sur la théorie des points infiniment voisins
à la Enriques, développée dans les premiers chapitres de son livre.

Nous terminons ce paragraphe en comparant les valeurs obtenues pour
Suff(/) par quelques auteurs, pour aider le lecteur à s'y retrouver. Les

invariants polaires ^ de B. Teissier sont définis par l'égalité

eq
{ 1

I(TgJ 0)

Mq mult(r^)

où {Tq} désigne l'ensemble des branches d'une polaire de /. (Voir [Tei2]

p.270.)
q

Dans nos deux articles cités avec F. Michel, nous avons démontré que
l'ensemble {I(TqJ 0)/mult(r^)}^ est égal à l'ensemble {qD} où D

parcourt l'ensemble des composantes de rupture de la résolution minimale
de /. Compte tenu de la différence d'une unité entre les ^ et les qo notre
théorème 7.3 est bien numériquement équivalent au théorème de B. Teissier,
à la p. 280 de [Tei2].

On observera que le même décalage d'une unité se retrouve dans la formule

Suff(/) [Loja(/)] + 1 citée au début de ce paragraphe. Compte tenu du

cor. 2 p. 270 de [Tei2] qui affirme que Loja(/) max { j (voir aussi

[Teil] p. 626) tous les énoncés sont bien numériquement équivalents.
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