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Preuve du lemme 6.1. On observe qu'il ne s'agit de rien d'autre que de

construire la résolution de xv — y11 0. Concrètement, en utilisant les calculs
du début de l'appendice de [L-M-W2] on vérifie qu'en un sommet | de

l'approximation lente, la valuation de k sur la composante qui correspond à

ce sommet vaut av — bu. Elle s'annule donc uniquement au sommet |
Les sommets qui sont à droite de ^ satisfont l'inégalité ^ < | tandis que

ceux qui sont à gauche satisfont f < •

Utilisation du lemme 6.1. Revenons au paragraphe 2 et à la méthode

proposée pour éliminer les indéterminations de h |j-. Dans la résolution
minimale de h\h2 0 les éventuels points d'indétermination se trouvent au

point d'intersection du diviseur Z des zéros avec le diviseur P des pôles.

Localement, la situation est exactement celle du lemme. On obtient donc

une résolution de h en insérant à la place du point d'indétermination le lieu

exceptionnel donné par le lemme 6.1. Le point 2 du lemme dit exactement

comment se fait le recollement. L'entier —u est le coefficient dans P de la

composante de P qui passe par le point d'indétermination tandis que v est le

coefficient de la composante de Z qui passe par le point d'indétermination.
Ceci complète ce que nous avons dit à la fin du paragraphe 3. Connaissant

la topologie colorée de h\h2 0 (par exemple via sa résolution minimale)
on peut déterminer effectivement la topologie colorée de h\h2hg&n 0. En

effet, la valuation de h le long de chaque composante du lieu exceptionnel
se calcule par les moyens habituels. Elle peut, par exemple, se ramener à un
calcul de coefficients d'enlacement. Ensuite, chaque point d'indétermination
est remplacé par le segment décrit par le lemme 6.1. Einalement, on obtient

une résolution de h\h2hg&n 0 en ajoutant, en plus des flèches colorées

de hiJi2 0 des flèches d'une troisième couleur à chaque dicritique D^ en

nombre égal au degré de l'application h\Db P1.

§7. Le calcul du degré de C°-suffisance

Soit 7r: X —» U la résolution minimale de /. Soit D une composante
irréductible de 7r—1 (0) et soit 7 une curvette de D. Rappelons qu'il s'agit
d'un germe de courbe lisse, transverse à D en un point de D qui est lisse dans

la transformée totale de / 0 par 7r. Par définition, le quotient d'Hironaka

qD de D est le nombre rationnel qD — /(/, 7*)//(/, 7*) ; dans cette formule /

représente une droite transverse à / 0 et 7* est l'image de 7 par 7r (voir
le paragraphe 1).
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La formule classique pour le calcul du nombre d'intersection implique

immédiatement que l'on a /(/, 7*) valo(f °tt) et /(/, 7*) val^(/o7r). Par

conséquent, on a aussi qo valD(f 0 7r)/valD(/ on).
Soit maintenant N un entier > 0. La composante D appartient au diviseur

des pôles de la fonction méromorphe hon, où h— f(x,y)/l(x,y)N+l si et

seulement si valz)(/ o n)/va\D(lN+l o n) < 1. Autrement dit, si et seulement

si qj) < N + 1.

Lemme 7.1. Supposons qu'on a qD < N + 1 pour toutes les composantes
de rupture de 7T-1(0). A/c>rs on a qD < A + 1 powr fowto les composantes
de 7T_

1

(0). De plus, l'égalité ne peut avoir (éventuellement) lieu qu'en une

composante D° de tt-1(0) gm ne rencontre qu'une seule autre composante
de 7T_

1

(0) on passe exactement une composante de la transformée stricte
de f par 71r, (Nous dirons que D° satisfait la condition C.)

Pour démontrer le lemme 7.1 nous aurons besoin d'un théorème de

croissance. Pour énoncer ce dernier, il est plus confortable d'avoir recours
à l'arbre dual R de la résolution n. Nous renvoyons au §3 de [L-M-W2]
pour le vocabulaire qui s'y rattache. Remarquons aussi que la composante de

7T_
1

(0) obtenue par éclatement de l'origine de C2 (c'est-à-dire celle qui porte
le numéro 1) est la composante où s'attache la transformée stricte de l par
7T. Le théorème de croissance s'énonce alors ainsi.

THÉORÈME 7.2. Soit a une arête de R, d'extrémités D et D'. Supposons

que D est plus proche de la composante numéro 1 que D'. Alors on a

Çd f qD' • De plus, l'inégalité est stricte si et seulement si en parcourant
l'arête a en allant de D vers D', on se rapproche d'au moins une composante
de la transformée stricte de f 0 (autrement dit, si l'on se rapproche d'au
moins une flèche).

Pour une preuve du théorème 7.2 voir le théorème 3.2 et son corollaire
3.3 de [L-M-W2].

Preuve du lemme 7.1. On remarque pour commencer qu'une composante
de 7T_

1

(0) où passe au moins une composante de la transformée stricte de

f 0 n'est pas une composante de rupture si et seulement si elle satisfait la
condition C.

S'il n'existe pas de telle composante, le maximum des qD où D parcourt
l'ensemble des composantes de 7r_1(0) est égal au maximum des qD où D
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parcourt seulement l'ensemble des sommets de rupture, à cause du théorème
de croissance. Le lemme 7.1 est donc démontré dans ce cas.

Préoccupons-nous donc des composantes satisfaisant la condition C.

L'archétype d'une telle situation est fourni par les singularités d'équation
y(yq — xp) 0 avec p > q (et pgcd(p,q) 1 si l'on veut). Il est amusant de

constater que T. C. Kuo dans [Kuol] p. 226 a également dû traiter avec un soin

particulier ces mêmes singularités. En un sens, ce sont celles pour lesquelles la
valeur donnée pour le degré de C°-suffisance est la plus «limite». La résolution
minimale d'une telle singularité est donnée par le processus d'approximation
lente donné plus haut. Il y a deux composantes de 7r-1(0) où passe (au moins)
une composante de la transformée stricte. L'une D' correspond au nombre

rationnel p/q. L'autre D" correspond au nombre rationnel (en fait entier)
h° + 1, où h° est la partie entière de p/q. C'est cette dernière composante
qui satisfait la condition C.

On a q£>> p +1 et qo" p + h° + 1. On voit qu'en prenant N p + [|]
l'égalité est atteinte en D", puisque h° [|].

Le cas général se démontre de façon analogue, en utilisant les formules
données dans [L-M-W2]. L'égalité n'est pas nécessairement atteinte.

THÉORÈME 7.3. Supposons f à singularité isolée à l'origine de C2.

Alors Suff(f) est égal au maximum des [qp] où D parcourt l'ensemble des

composantes de rupture de 7r_1(0) (it est la résolution minimale de f — 0).

Preuve du théorème 7.3. Posons N max {[#£>]} où D parcourt

l'ensemble des composantes de rupture de 7r_1(0). Dans un premier temps,

il s'agit de montrer que / — Xg 0 a la même topologie que /, pour tout
À G C et tout g G m^+1. La preuve est divisée en un certain nombre de cas.

1er cas: g(x,y) lM(x,y) où l(x.y) 0 est l'équation d'une droite

transverse à /(jc, y) 0 et où M > N + 1.

Ceci est le cas exemplaire, qui rend particulièrement visible pourquoi le

degré de C°-sufhsance a la valeur annoncée. Voir aussi la remarque à la fin
de la preuve du théorème 7.3.

Les calculs que nous venons de faire montrent que toutes les composantes
de 7T-1(0) sont dans les pôles de h on où h (/ : lM) sauf éventuellement

pour certaines composantes satisfaisant la condition C (situation que nous

traiterons un peu plus loin).
En chaque point de contact de la transformée stricte de /, nous avons un

point d'indétermination de la fonction méromorphe ho tt lorsque l'inégalité
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est stricte. En ce point, nous appliquons le lemme 6.1 à hon en observant que

u 1 car la singularité est isolée. C'est ici que cette hypothèse intervient

Selon la remarque qui suit la preuve du lemme 6.1 toutes les composantes

dicritiques obtenues sont bonnes.

Supposons maintenant que l'on a une composante D° satisfaisant la

condition C, que qDo N+l et que M X+l. Dans ce cas, cette composante

est dicritique pour hon. Mais elle est bonne car la seule composante de n *(())

qu'elle rencontre est dans les pôles (théorème de croissance et le degré de

la restriction de h o n à D° vaut 1, puisque D° ne rencontre qu'une seule

composante de la transformée stricte de / 0.

2e cas: g(x,y) G mM avec M > X + 1 et la transformée stricte de g par
7r ne s'attache en aucun point de contact de la transformée stricte de / 0.

La démonstration est la même que dans le 1er cas. En effet, le calcul

classique des multiplicités du diviseur (gon) montre qu'en chaque composante
D de 7T_

1 (0) on a valdQN+1 ° tt) < valD(g ° tt).

3e cas: g(x.y) G mM avec M > N + 1, mais la transformée stricte de

g 0 par n s'attache en (au moins) un point de contact de la transformée
stricte de / 0.

Soit Q un tel point. Il y a deux sous-cas 3a et 3b.

Cas 3a : La transformée stricte de g en Q ne contient pas ensemblistement
la transformée stricte de / 0. (Rappelons que n est la résolution minimale
de / et donc la transformée stricte de / 0 en Q est lisse et transverse au

lieu exceptionnel.)
Éclatons le point Q. Nous obtenons une nouvelle composante D' et une

nouvelle projection n' (qui remplace n). On a: on') valD(/o7r) + 1

et valD'(goftr) v'd\D(gon)+m avec m > 0. En un nombre fini d'éclatements
on sépare g de / et l'on se retrouve dans la situation du 2e cas. Le fait que
n1 n'est pas minimale ne gêne pas.

Cas 3b : La transformée stricte de g 0 en Q contient celle de / 0.
Autrement dit, on a une composante fixe.

Un calcul analogue au précédent montre que l'on peut commencer par faire
des éclatements pour se ramener au cas où la transformée stricte de g 0
est égale à celle de / 0. En présence d'une composante fixe, il ne sert à
rien de faire des éclatements. Choisissons plutôt des coordonnées locales en
Q telles que Y 0 soit l'équation du lieu exceptionnel et que X 0 soit
l'équation de la transformée stricte de /. Alors le pinceau local associé à

-on s'écrit gX - AuXmYn 0 où u est une unité en X et Y. Ici m est
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un entier > 0. Le point important est que n > 0 même dans le cas où Q

appartient à une composante D satisfaisant la condition C. La raison est que
valdQN+1 ° tt) < valf)(g o 7r) car g passe par Q tandis que l s'attache en la

composante numéro 1. Ceci découle du calcul usuel des multiplicités pour les

résolutions des singularités de courbes planes. On voit alors que le pinceau
local en Q n'a que oo comme valeur spéciale. Ceci achève la preuve de la

première partie du théorème 7.3.

Dans un deuxième temps, nous allons maintenant montrer que, si M est

un entier > 0 strictement inférieur à max{[qD]} où D parcourt l'ensemble

des composantes de rupture de 7r-1(0), alors le jet ßM\f) n'est pas

topologiquement suffisant.

Manifestement, il suffit de montrer que le pinceau /(jc, y) — À/(x,y)M+1 0

n'est pas équisingulier pour À G C. (Comme précédemment l(x,y) 0 est

l'équation d'une droite transverse à f(x:y) 0.)
Par hypothèse, il existe au moins une composante de rupture D' telle que

M+1 < qD> • Par le théorème de croissance, on peut supposer que D' contient
des points de contact de la transformée stricte de / 0.

Supposons pour commencer que l'inégalité est stricte. Comme / est

transverse à / 0, la résolution minimale de / 0 est aussi celle de

If 0. La transformée stricte V de l est dans le diviseur P des pôles
de (/ : /M+1) tandis que, par hypothèse, la composante D' est dans le

diviseur Z des zéros de h. Notons T la géodésique de l'arbre de la résolution

minimale de / qui relie le sommet numéro 1 à D'. La démonstration de

la proposition 2.1 indique que T contient des composantes dicritiques ou

des points d'indétermination. (Les deux possibilités peuvent coexister.) En

ce qui concerne les points d'indétermination, appliquons le procédé décrit
dans le lemme 6.1. Nous obtenons une nouvelle géodésique V qui relie le

sommet numéro 1 à D'. Soit D" la composante dicritique dans V qui est la

plus proche de D'. Alors, l'ensemble des valeurs spéciales S" associé à D"
contient au moins une valeur distincte de oo. En effet, par construction, D"
rencontre une composante D telle que D" P\D {Q} et h(Q) / oo.

S'il y a égalité M+1 qw alors la composante D' est dicritique. Si

D' rencontre des composantes de 7r-1(0) qui ne sont pas dans les pôles,

on considère la valeur \f prise par h au point d'intersection d'une de ces

composantes avec D'. Par construction \' ^ oo et l'on conclut comme ci-

dessus. Si D' ne rencontre que des composantes qui sont dans les pôles, alors

D' (qui est une composante de rupture) contient au moins 2 points de contact

de la transformée stricte de / 0.
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Par conséquent, le degré h\o' —> P1 est au moins égal à 2. La restriction de

h à D' aura au moins une valeur critique distincte de oo (grâce au théorème

de Hurwitz). Par conséquent SD> contient au moins une valeur distincte de

oo et l'on conclut comme précédemment. Fin de la preuve du théorème 7.3.

Remarques finales.
1. La preuve du théorème 7.3 montre clairement que si / n'est pas à

singularité isolée à l'origine, aucun jet n'est suffisant (pour r fini). En

effet, choisissons un point de contact de la transformée stricte de / 0 avec

7T_
1

(0) où cette transformée stricte n'est pas réduite.

Appliquons le lemme 6.1 pour g l(x,y)N avec N grand et h — ^.
On voit que l'on a m > 1 car / n'est pas réduite. La remarque qui suit

le lemme 6.1 indique que la composante dicritique créée par l'utilisation du

lemme 6.1 n'est pas bonne. Il est facile de déterminer grâce au lemme 6.1

quel est le membre générique du pinceau ainsi créé (il dépend de l'entier N).
Bien sûr, ce membre générique est à singularité isolée. Ceci donne un autre

point de vue sur les résultats de H. Maugendre dans sa thèse. (Voir [Mau].)

2. Soit /(xy) 0 l'équation d'une droite transverse à /(xy) 0. La

preuve du théorème 7.3 montre que le jet /r)(/) est topologiquement suffisant
si et seulement si / — À/r+1 est topologiquement équivalent à / pour tout
À G C Comparer avec B. Teissier dans [Tei2] p. 280.

§8. Un petit historique de la C°-suffisance

Le concept de C°-suffisance apparaît dans l'article de R. Thom au colloque
de Bombay. (Voir [Thom].) Le rôle de l'inégalité de Lojasiewicz y est mis en
évidence.

Au cours des années 1970-80, plusieurs auteurs (voir, entre autres, [Kuo2],
[Bo-Lo], [Ch-Lu]) ont établi que Suff(/) est donné par l'inégalité de

Lojasiewicz de la façon suivante. On considère les exposants 9 > 0 tels
qu'il existe un voisinage U de l'origine et une constante C > 0 tels que l'on
ait: |grad f(z)\ > C\zf pour tout z G U. La borne inférieure des 9 ayant
cette propriété est Vexposant de Lojasiewicz Loja(/). Le résultat obtenu par
plusieurs auteurs est que Suff(/) [Loja(/)] + 1, où [x] désigne la partie
entière de x.

Dans [Kuo-Lu] T.C. Kuo et Y.C. Lu ont donné une façon explicite de
calculer 1 exposant de Lojasiewicz pour les germes de courbes planes, en
utilisant les développements de Puiseux des branches de / 0.
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