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372 LE D.T. ET C. WEBER

Preuve du lemme 6.1. On observe qu’il ne s’agit de rien d’autre que de
construire la résolution de x¥ —y* = 0. Concrétement, en utilisant les calculs
du début de l’appendice de [L-M-W2] on vérifie qu'en un sommet % de
I’approximation lente, la valuation de £ sur la composante qui correspond a

. /
ce sommet vaut av — bu. Elle s’annule donc uniquement au sommet % =14

7 .
. ~ . / . 9 , ., o, / .
Les sommets qui sont a droite de ;5 satisfont 'inégalité¢ *; < ¢ tandis que

. & . /
ceux qui sont a gauche satisfont ¢ < 5. [

Utilisation du lemme 6.1. Revenons au paragraphe 2 et a la méthode
proposée pour €liminer les indéterminations de h = Z—; Dans la résolution
minimale de /1h; = 0 les éventuels points d’indétermination se trouvent au
point d’intersection du diviseur Z des zéros avec le diviseur P des pdles.
Localement, la situation est exactement celle du lemme. On obtient donc
une résolution de % en insérant a la place du point d’indétermination le lieu
exceptionnel donné par le lemme 6.1. Le point 2 du lemme dit exactement
comment se fait le recollement. L’entier —u est le coefficient dans P de la
composante de P qui passe par le point d’indétermination tandis que v est le
coefficient de la composante de Z qui passe par le point d’indétermination.
Ceci complete ce que nous avons dit a la fin du paragraphe 3. Connaissant
la topologie colorée de hjhy = 0 (par exemple via sa résolution minimale) |
on peut déterminer effectivement la topologie colorée de hjhohg, = 0. En
effet, la valuation de % le long de chaque composante du lieu exceptionnel
se calcule par les moyens habituels. Elle peut, par exemple, se ramener a un
calcul de coefficients d’enlacement. Ensuite, chaque point d’indétermination
est remplacé par le segment décrit par le lemme 6.1. Finalement, on obtient |
une résolution de hihyhee, = 0 en ajoutant, en plus des fleches colorées
de hh, = 0 des fleches d’une troisieme couleur a chaque dicritique D; en
nombre égal au degré de ’application A p, — PL.

§7. LE CALCUL DU DEGRE DE C°-SUFFISANCE

Soit 7: X — U la résolution minimale de f. Soit D une composante |
irréductible de 7~!(0) et soit v une curvette de D. Rappelons qu’il s’agit
d’un germe de courbe lisse, transverse a D en un point de D qui est lisse dans
la transformée totale de f = O par m. Par définition, le quotient d’Hironaka |
gp de D est le nombre rationnel gp = I(f,7.)/I(l,7v); dans cette formule ! |
représente une droite transverse a f =0 et 7y, est I'image de v par m (voir «
le paragraphe 1).
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La formule classique pour le calcul du nombre d’intersection implique
immédiatement que 1’on a I(f,y.) = valp(fom) et I(l,vx) = valp(lom). Par
conséquent, on a aussi gp = valp(f om)/valp(lom).

Soit maintenant N un entier > 0. La composante D appartient au diviseur
des poles de la fonction méromorphe how, ol h = f(x,y)/ I(x, y)VT1 si et
seulement si valp(f o) /ValD(lN tlom) < 1. Autrement dit, si et seulement
sigp <N-+1.

LEMME 7.1. Supposons qu’on a qp < N+ 1 pour toutes les composantes
de rupture de w1(0). Alors on a qp < N + 1 pour toutes les composantes
de 771(0). De plus, I’égalité ne peut avoir (éventuellement) lieu qu’en une
composante D° de 7w~1(0) qui ne rencontre qu’une seule autre composante
de m~1(0) et on passe exactement une composante de la transformée stricte
de f par w. (Nous dirons que D° satisfait la condition C.)

Pour démontrer le lemme 7.1 nous aurons besoin d’un théoreme de
croissance. Pour énoncer ce dernier, il est plus confortable d’avoir recours
a l’arbre dual R de la résolution m. Nous renvoyons au §3 de [L-M-W2]
pour le vocabulaire qui s’y rattache. Remarquons aussi que la composante de
7~1(0) obtenue par éclatement de ’origine de C? (c’est-a-dire celle qui porte
le numéro 1) est la composante ou s’attache la transformée stricte de [ par
7. Le théoreme de croissance s’énonce alors ainsi.

THEOREME 7.2. Soit « une aréte de R, d’extrémités D et D'. Supposons
que D est plus proche de la composante numéro 1 que D’. Alors on a
gp < qp'. De plus, I'inégalité est stricte si et seulement si en parcourant
l'aréte o en allant de D vers D', on se rapproche d’au moins une composante
de la transformée stricte de f = 0 (autrement dit, si l'on se rapproche d’au
moins une fleche).

Pour une preuve du théoreme 7.2 voir le théoréme 3.2 et son corollaire
3.3 de [L-M-W2].

Preuve du lemme 7.1.  On remarque pour commencer qu’une composante
de 77'(0) od passe au moins une composante de la transformée stricte de
Jf =0 n’est pas une composante de rupture si et seulement si elle satisfait la
condition C.

S’1l n’existe pas de telle composante, le maximum des gp ou D parcourt
Pensemble des composantes de 7~ 1(0) est €gal au maximum des gp ou D
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parcourt seulement I’ensemble des sommets de rupture, a cause du théoreme
de croissance. Le lemme 7.1 est donc démontré dans ce cas.

Préoccupons-nous donc des composantes satisfaisant la condition C.
L’archétype d’une telle situation est fourni par les singularités d’équation
y(y? —xP) =0 avec p > g (et pged(p,q) = 1 si I’on veut). Il est amusant de
constater que T. C. Kuo dans [Kuol] p. 226 a également dii traiter avec un soin
particulier ces mémes singularités. En un sens, ce sont celles pour lesquelles la
valeur donnée pour le degré de C°-suffisance est la plus «limite ». La résolution
minimale d’une telle- singularité est donnée par le processus d’approximation
lente donné plus haut. Il y a deux composantes de 7~ 1(0) ol passe (au moins)
une composante de la transformée stricte. L'une D’ correspond au nombre
rationnel p/qg. Lautre D" correspond au nombre rationnel (en fait entier)
B0+ 1, ot h¥ est la partie entiere de p/q. C’est cette derniére composante
qui satisfait la condition C.

On a gp :p+§ et gp = p+h°41. On voit qu’en prenant N = p+ [g]

I’égalité est atteinte en D", puisque h’ = [g—}
Le cas général se démontre de facon analogue, en utilisant les formules

données dans [L-M-W2]. ’égalité n’est pas nécessairement atteinte. L]

THEOREME 7.3. Supposons f a singularité isolée a ['origine de C>.
Alors Suff(f) est égal au maximum des [qp] ou D parcourt I’ensemble des
composantes de rupture de w=1(0) (7 est la résolution minimale de f =0).

Preuve du théoreme 7.3. Posons N = mgx{[qD]} ou D parcourt

I’ensemble des composantes de rupture de 7~ 1(0). Dans un premier temps,
il s’agit de montrer que f — A\g = 0 a la méme topologie que f, pour tout
A e C ettout g € m¥t!. La preuve est divisée en un certain nombre de cas.

1¢ cas: g(x,y) = M(x,y) ot lx,y) = 0 est I’équation d’une droite
transverse a f(x,y) =0 etou M >N + 1. )

Ceci est le cas exemplaire, qui rend particulierement visible pourquoi le
degré de CP-suffisance a la valeur annoncée. Voir aussi la remarque 2 la fin
de la preuve du théoreme 7.3.

Les calculs que nous venons de faire montrent que toutes les composantes
de 771(0) sont dans les poles de hom ol h = (f: (M) sauf éventuellement
pour certaines composantes satisfaisant la condition C (situation que nous
traiterons un peu plus loin).

En chaque point de contact de la transformée stricte de f, nous avons un :
point d’indétermination de la fonction méromorphe 4o 7 lorsque I’inégalité
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est stricte. En ce point, nous appliquons le lemme 6.1 2 ho7 en observant que
u=1 car la singularité est isolée. C’est ici que cette hypothese intervient !
Selon la remarque qui suit la preuve du lemme 6.1 toutes les composantes
dicritiques obtenues sont bonnes.

Supposons maintenant que l’on a une composante D° satisfaisant la
condition C, que gp, = N+1 et que M = N+1. Dans ce cas, cette composante
est dicritique pour how. Mais elle est bonne car la seule composante de 7~1(0)
qu’elle rencontre est dans les poles (théoréme de croissance!) et le degré de
la restriction de hom a D° vaut 1, puisque D’ ne rencontre qu’une seule
composante de la transformée stricte de f = 0.

2¢ cas: g(x,y) € m” avec M > N+ 1 et la transformée stricte de g par
7 ne s’attache en aucun point de contact de la transformée stricte de f = 0.

La démonstration est la méme que dans le 1% cas. En effet, le calcul
classique des multiplicités du diviseur (go7r) montre qu’en chaque composante
D de 7~ 1(0) on a valp(Vt! o 1) < valp(g o).

3¢ cas: g(x,y) € m¥ avec M > N + 1, mais la transformée stricte de
g = 0 par 7 s’attache en (au moins) un point de contact de la transformée
stricte de f = 0.

Soit Q un tel point. Il y a deux sous-cas 3a et 3b.

Cas 3a: La transformée stricte de g en Q ne contient pas ensemblistement
la transformée stricte de f = 0. (Rappelons que 7 est la résolution minimale
de f et donc la transformée stricte de f =0 en Q est lisse et transverse au
lieu exceptionnel.)

Eclatons le point Q. Nous obtenons une nouvelle composante D’ et une
nouvelle projection 7’ (qui remplace 7). On a: valp/(fon’) = valp(fom)+1
et valp(gon’) = valp(gom)+m avec m > 0. En un nombre fini d’éclatements
on sépare g de f et I'on se retrouve dans la situation du 2¢ cas. Le fait que
7’ n’est pas minimale ne géne pas.

Cas 3b.: La transformée stricte de g =0 en Q contient celle de f = 0.
Autrement dit, on a une composante fixe.

Un calcul analogue au précédent montre que 1’on peut commencer par faire
des éclatements pour se ramener au cas ou la transformée stricte de g = 0
est €gale a celle de f = 0. En présence d’une composante fixe, il ne sert a
rien de faire des éclatements. Choisissons plutdt des coordonnées locales en
Q telles que Y = 0 soit I’équation du lieu exceptionnel et que X = 0 soit
I’équation de la transformée stricte de f. Alors le pinceau local associé i

ﬁow s’€crit nX — AuX"Y" = 0 ol u est une unité en X et Y. Ici m est
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un entier > 0. Le point important est que » > 0 méme dans le cas ou Q
appartient a une composante D satisfaisant la condition C. La raison est que
valp(/N 1 o ) < valp(g o m) car g passe par Q tandis que [ s’attache en la
composante numeéro 1. Ceci découle du calcul usuel des multiplicités pour les
résolutions des singularités de courbes planes. On voit alors que le pinceau
local en QO n’a que co comme valeur spéciale. Ceci achéve la preuve de la
premiere partie du théoreme 7.3.

Dans un deuxieme temps, nous allons maintenant montrer que, si M est
un entier > O strictement inférieur & max {[gp]} ou D parcourt I’ensemble
D

des composantes de rupture de 7~ !(0), alors le jet j™(f) n’est pas
topologiquement suffisant.

Manifestement, il suffit de montrer que le pinceau f(x,y) — M(x, yyM*+! =0
n’est pas équisingulier pour A € C. (Comme précédemment /(x,y) = 0 est
I’équation d’une droite transverse a f(x,y) =0.)

Par hypothése, il existe au moins une composante de rupture D’ telle que
M+1 < gp . Par le théoreme de croissance, on peut supposer que D’ contient
des points de contact de la transformée stricte de f = 0.

Supposons pour commencer que 1’inégalité est stricte. Comme [ est
transverse a f = 0, la résolution minimale de f = 0 est aussi celle de
If = 0. La transformée stricte !’ de [ est dans le diviseur P des pbles
de (f : (M) tandis que, par hypothése, la composante D’ est dans le
diviseur Z des zéros de /. Notons I' la géodésique de I’arbre de la résolution
minimale de f qui relie le sommet numéro 1 a D’. La démonstration de
la proposition 2.1 indique que I' contient des composantes dicritiques ou
des points d’indétermination. (Les deux possibilités peuvent coexister.) En
ce qui concerne les points d’indétermination, appliquons le procédé décrit
dans le lemme 6.1. Nous obtenons une nouvelle géodésique I qui relie le
sommet numéro 1 a D’. Soit D" la composante dicritique dans I” qui est la
plus proche de D’. Alors, ’ensemble des valeurs spéciales S associé a D"
contient au moins une valeur distincte de oco. En effet, par construction, D"
rencontre une composante D telle que D ND = {Q} et h(Q) # co.

S’il y a égalité M + 1 = gp alors la composante D’ est dicritique. Si
D’ rencontre des composantes de 7~ '(0) qui ne sont pas dans les poles,
on considére la valeur )\ prise par h au point d’intersection d’une de ces
composantes avec D’. Par construction A" # oo et 1’on conclut comme ci-
dessus. Si D’ ne rencontre que des composantes qui sont dans les pdles, alors
D’ (qui est une composante de rupture) contient au moins 2 points de contact
de la transformée stricte de f = 0.
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Par conséquent, le degré h|lp — P! est au moins égal & 2. La restriction de
h a D' aura au moins une valeur critique distincte de co (grdce au théoreme
de Hurwitz). Par conséquent Sp contient au moins une valeur distincte de
oo et I’on conclut comme précédemment. Fin de la preuve du théoreme 7.3.

REMARQUES FINALES.

1. La preuve du théoréme 7.3 montre clairement que si f n’est pas a
singularité isolée & 1’origine, aucun jet j*(f) n’est suffisant (pour r fini). En
effet, choisissons un point de contact de la transformée stricte de f = 0 avec
771(0) ou cette transformée stricte n’est pas réduite.

Appliquons le lemme 6.1 pour g = I(x,y)" avec N grand et h = J;.
On voit que ’on a u > 1 car f n’est pas réduite. La remarque qui suit
le lemme 6.1 indique que la composante dicritique créée par 1’utilisation du
lemme 6.1 n’est pas bonne. Il est facile de déterminer grice au lemme 6.1
quel est le membre générique du pinceau ainsi créé (il dépend de ’entier N).
Bien sfir, ce membre générique est a singularité isolée. Ceci donne un autre

point de vue sur les résultats de H. Maugendre dans sa these. (Voir [Mau].)

2. Soit l(x,y) = 0 I’équation d’une droite transverse a f(x,y) = 0. La
preuve du théoréme 7.3 montre que le jet j7)(f) est topologiquement suffisant
si et seulement si f — AI'T! est topologiquement équivalent & f pour tout
A € C. Comparer avec B. Teissier dans [Tei2] p. 280.

§8. UN PETIT HISTORIQUE DE LA CO-SUFFISANCE

Le concept de CY-suffisance apparait dans ’article de R. Thom au colloque
de Bombay. (Voir [Thom].) Le role de I'inégalité de Lojasiewicz y est mis en
évidence.

Au cours des années 1970-80, plusieurs auteurs (voir, entre autres, [Kuo2],
[Bo-Lo], [Ch-Lu]) ont établi que Suff(f) est donné par I’inégalité de
Lojasiewicz de la facon suivante. On considere les exposants 0 > 0 tels
qu’il existe un voisinage U de I’origine et une constante C > 0 tels que ’on
ait: |grad f(z)| > Clz|° pour tout z € U. La borne inférieure des 6 ayant
cette proprieté est [’exposant de Lojasiewicz Loja(f). Le résultat obtenu par
plusieurs auteurs est que Suff(f) = [Loja( f)] + 1, ou [x] désigne la partie
entiere de x.

Dans [Kuo-Lu] T.C. Kuo et Y.C. Lu ont donné une facon explicite de
calculer I’exposant de Lojasiewicz pour les germes de courbes planes, en
utilisant les développements de Puiseux des branches de f = 0.

->.
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