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Dans le paragraphe 7, nous déterminons le degré de C°-suffisance d'un

germe / en cherchant à quelle condition sur la multiplicité de g les

composantes dicritiques de h ^ sont toutes bonnes.

§6. Étude d'un cas particulier

Considérons le germe de fonction méromorphe donné par k(x,y) ^ où

u et v sont deux entiers supérieurs ou égaux à 1. La résolution minimale
de k(x,y) est donnée par la processus suivant. On écrit u ru' et v rv'
avec pgcd(u\vr) 1. On construit l'approximation lente de Pour plus
de détails sur ce procédé, voir [L-M-W2] début de l'appendice. Le point de

départ est fourni par le développement en fraction continue de ^ donné par :

u /v' — h° H

»+
1

où l'on a 0 < h°, 1 < h1 pour 1 < i < s — 1, 2 < hs. Posons m h1.

i=0

Lemme 6.1.

1. Il y a exactement une composante dicritique et c'est la composante
obtenue après m éclatements. Elle correspond précisément au nombre
rationnel ^7 de l'approximation lente.

2. La transformée stricte de y11 0 est une curvette de la composante
qui correspond au sommet le plus à gauche. La transformée stricte de xv 0

est une curvette du sommet le plus à droite.

3. Le degré de la restriction de k à la composante dicritique est égal à
r pgcd(u,v).

4. Les sommets qui sont à gauche de la composante dicritique ont
valuation < 0 tandis que ceux qui sont à droite ont valuation > 0.

Conséquence du lemme 6.1 (importante pour la suite). La composante
dicritique est bonne si et seulement si u 1. En effet u 1 est équivalent à :

1. r 1, i.e. le degré de la restriction de k au dicritique est égal à 1.

2. Les composantes du lieu exceptionnel qui rencontrent le dicritique ont
valuation < 0 (en fait il n'y a qu'une composante du lieu exceptionnel qui
rencontre le dicritique).
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Preuve du lemme 6.1. On observe qu'il ne s'agit de rien d'autre que de

construire la résolution de xv — y11 0. Concrètement, en utilisant les calculs
du début de l'appendice de [L-M-W2] on vérifie qu'en un sommet | de

l'approximation lente, la valuation de k sur la composante qui correspond à

ce sommet vaut av — bu. Elle s'annule donc uniquement au sommet |
Les sommets qui sont à droite de ^ satisfont l'inégalité ^ < | tandis que

ceux qui sont à gauche satisfont f < •

Utilisation du lemme 6.1. Revenons au paragraphe 2 et à la méthode

proposée pour éliminer les indéterminations de h |j-. Dans la résolution
minimale de h\h2 0 les éventuels points d'indétermination se trouvent au

point d'intersection du diviseur Z des zéros avec le diviseur P des pôles.

Localement, la situation est exactement celle du lemme. On obtient donc

une résolution de h en insérant à la place du point d'indétermination le lieu

exceptionnel donné par le lemme 6.1. Le point 2 du lemme dit exactement

comment se fait le recollement. L'entier —u est le coefficient dans P de la

composante de P qui passe par le point d'indétermination tandis que v est le

coefficient de la composante de Z qui passe par le point d'indétermination.
Ceci complète ce que nous avons dit à la fin du paragraphe 3. Connaissant

la topologie colorée de h\h2 0 (par exemple via sa résolution minimale)
on peut déterminer effectivement la topologie colorée de h\h2hg&n 0. En

effet, la valuation de h le long de chaque composante du lieu exceptionnel
se calcule par les moyens habituels. Elle peut, par exemple, se ramener à un
calcul de coefficients d'enlacement. Ensuite, chaque point d'indétermination
est remplacé par le segment décrit par le lemme 6.1. Einalement, on obtient

une résolution de h\h2hg&n 0 en ajoutant, en plus des flèches colorées

de hiJi2 0 des flèches d'une troisième couleur à chaque dicritique D^ en

nombre égal au degré de l'application h\Db P1.

§7. Le calcul du degré de C°-suffisance

Soit 7r: X —» U la résolution minimale de /. Soit D une composante
irréductible de 7r—1 (0) et soit 7 une curvette de D. Rappelons qu'il s'agit
d'un germe de courbe lisse, transverse à D en un point de D qui est lisse dans

la transformée totale de / 0 par 7r. Par définition, le quotient d'Hironaka

qD de D est le nombre rationnel qD — /(/, 7*)//(/, 7*) ; dans cette formule /

représente une droite transverse à / 0 et 7* est l'image de 7 par 7r (voir
le paragraphe 1).
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