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§4. L'OUVERT D'ÉQUISINGULARITÉ D'UN PINCEAU LOCAL

Dans ce paragraphe, nous donnons une preuve détaillée du théorème

suivant, qui caractérise l'ouvert d'équisingularité d'un pinceau local.

THÉORÈME 4.1. Soient h\ et h2 comme au début du paragraphe 2. Soient

w et w' deux points de P1. Alors :

L Les germes h~l(w) et h~\w') ont même topologie si w et w' sont

génériques.

2. Les germes h~l(w) et h~1 (w/f) n'ont pas la même topologie si w

est générique et si w" est spécial.

Commençons par énoncer une proposition qui est un cas particulier d'un

phénomène bien plus général.

Proposition 4.2. Soient h\ et h2 comme au début du paragraphe 2.

Alors il existe un ouvert non-vide QcP1 ayant les propriétés suivantes :

1. Si w et w' G Ll les germes h~l(w) et h~l(w') ont la même topologie.

2. Si w G Q et si w" Q les germes h~l(w) et h~l(w") n'ont pas la

même topologie.

DÉFINITION. L'ouvert £2 est appelé l'ouvert d'équisingularité du pinceau.

Commentaire. Le théorème 4.1 affirme que l'ouvert d'équisingularité
coïncide avec l'ouvert des valeurs génériques (ce dernier étant défini comme
le complémentaire de l'ensemble des valeurs spéciales, définies au début
du §3). Un point important est que l'on a affaire à un ouvert (de Zariski).

Soit p: P1 —» N U {+00} la fonction qui associe à chaque w G P1 le
nombre de Milnor du germe h~l(w), en convenant que le nombre de Milnor
d'un germe non réduit vaut +00.

LEMME 4.3. La fonction p est semi-continue supérieurement.

Preuve du lemme 4.3. Rappelons que la semi-continuité supérieure signifie
ceci. Pour tout we P1 il existe un ouvert W contenant w, tel que pour tout
w' e W on ait p(w) > p(w').
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Fixons w G P1. Soit S une petite sphère de Milnor pour le germe
Rappelons que l'équation de ce germe est fw — W\h2 — 0. Soit

z (zuZ2) C C2. Posons di{fw) ^ pour î 1,2.
Le nombre p de Milnor est le nombre d'intersection à l'origine de

d\(fw) 0 avec 82(fw) 0. Maintenant, quitte à restreindre S, on

peut supposer que S est aussi une sphère de Milnor pour le germe
{pi (fw)) (02(fw)) 0- Par le théorème de Lefschetz, p est aussi le

coefficient d'enlacement dans S de l'entrelacs orienté (d\(fw) 0) P\S avec

l'entrelacs (02(Au) 0) D S.

Si w' est proche de w, 0/(/^y,) — 0 coupe S transversalement (i =1,2)
et le coefficient d'enlacement dans S des entrelacs associés est égal à

celui de di(fw) 0 (invariance du coefficient d'enlacement par homotopie).
Toujours par le théorème de Lefschetz, le coefficient d'enlacement dans S

de (0i(fw') O) fï S avec (02(A*/) 0) H S est égal à la somme des

nombres d'intersection de d\(fw>) — 0 avec 02(Au') — 0 en leur divers points
d'intersection dans la boule B dont le bord est la sphère S. Comme ces

nombres d'intersection sont strictement positifs, on a bien l'inégalité annoncée

si l'on considère le nombre d'intersection de

<9i(/«/) 0 avec d2(fw>) 0

en l'origine.

Preuve de la proposition 4.2. Soit la valeur minimum prise par la

fonction p: P1 —> NU {+00}. Il résulte de la semi-continuité que l'ensemble
des w G P1 tels que p(w) /zm|n est un ouvert (non-vide) que nous

notons £1.

Le théorème p-constant de Lê (pour les germes de courbes planes) dit

que pour tous les w G £2, les germes h~l(w) ont la même topologie.
Voir [Lê].

Finalement, pour w G £2 et pour w" £ £2, la topologie de h~l(w) ne

peut être celle de h~l{w") puisque les nombres p de Milnor sont différents.

Ceci résulte du théorème de J. Milnor et V. Palamadov qui affirme que la

codimension de l'idéal jacobien est égale au premier nombre de Betti de la

fibre de Milnor. Voir [Mil] appendice B et [Pala].

Poursuivons nos préparatifs en vue de démontrer le théorème 4.1. Soient à

nouveau h\ et comme au début du paragraphe 2. Dans fixP1 considérons

la surface Z d'équation rjh\ — À/z2 0. La restriction à E des deux projections
de C x P1 sur chacun des facteurs fournit deux morphismes P : Z — U et

h' : Z —> P1 tels que le diagramme suivant commute :
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x

p

U --->P1.
Le morphisme P est l'éclatement de l'idéal engendré par h\ et Il est

facile de voir que P|p-i(c/—{o}) —* u ~ W est un isomorphisme tandis que

p_1(0) {0} x P1. Par conséquent, P lève l'indétermination de h et c'est

la façon la plus «économique» de le faire. Mais le «hic» est que £ est une

surface très singulière qui n'est pas normale en général.

Nous allons maintenant comparer P : X -» U avec la résolution minimale

p: U —> U construite au paragraphe 2.

Pour cela, considérons le lieu exceptionnel E p_1(0). Dans E, soit

Ä la réunion des composantes dicritiques. Considérons ensuite la différence

E — À et son adhérence ad(E — À). Cette dernière est l'union disjointe de

ses composantes connexes Ci,.... Q. La configuration de chaque C, est

représentée par un sous-graphe connexe (en fait un arbre) de l'arbre de

configuration de E. Après tout, p: U —> U peut être considérée comme une
résolution du point lisse 0 EU. Par le théorème de P. du Val et D. Mumford,
la forme intersection associée à E est négative définie. Voir [H-N-K] p. 86.

Par restriction, la forme intersection associée à chaque C; est aussi négative
définie.

Soit alors X le quotient de U obtenu en identifiant chaque Q en un
point (disons Pi). Par le théorème de H. Grauert, X peut être muni d'une
(unique) structure d'espace analytique normal. (Voir [Gr].) Par construction,
la restriction de h à chaque Q est constante. On en déduit que h passe au

quotient et fournit un morphisme h : X —> P1. Pour la même raison, on a un
morphisme n : X —» X tel que le diagramme suivant commute :

X

n

E ---+ P1.

Proposition 4.4. n:X-> E est la normalisation de E.

Preuve de la proposition 4.4. Par construction, l'espace analytique E
est normal. Il est facile de vérifier que n est un morphisme fini et
est un isomorphisme en restriction à un ouvert dense de points lisses.
(Voir [Lo].)
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Observons que dans la courbe C; aucune composante irréductible n'a self-
intersection égale à — 1, par minimalité de la résolution p. On en déduit

que chaque point P; G E est un point vraiment singulier et que {P;} pour
i 1,..., k est la liste complète des points singuliers de E. Par conséquent,
la projection q: U —* £ est la résolution minimale des singularités de E. En

résumé, nous obtenons donc le théorème suivant.

THÉORÈME 4.5. Il y a un grand diagramme commutatif:

U

U---> P1

où n est la normalisation de E et où q est la résolution minimale des

singularités de E.

Preuve du théorème 4.1. Soient donc w et w' deux valeurs génériques.

Il est clair que h~l(w) et h~l(wf) ont la même topologie. En effet, leurs

transformées strictes par la résolution minimale p de h passent uniquement par
les composantes dicritiques, qu'elles rencontrent de façon lisse et transverse.

De plus, pour une composante dicritique D donnée, le nombre de points
de contact de la transformée stricte de h~l(w) avec D est égal au nombre

de points de contact de la transformée stricte de h~l(wf) avec D. En effet,

ces deux nombres sont égaux au degré de l'application h\D Les deux

germes ont donc la même résolution et, par conséquent la même topologie.
Soient maintenant w" une valeur spéciale et w une valeur générique. Par

construction h~l(w") et h~1(w) n'ont pas la même résolution. Mais il se

pourrait tout de même que leurs arbres de résolution soient isomorphes. Nous

allons montrer (et c'est là l'essentiel de la démonstration du théorème) qu'il
n'en est rien.

1er cas. Soit Da une composante irréductible de E p~l(0) telle que la

restriction de h à Da soit constante. Soit wa G P1 la valeur h(Da). Raisonnons

par l'absurde en supposant que u]flGß.
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Tout d'abord, nous avons observé précédemment que jQ est un ouvert de

P1. Par construction tous les germes h~l(w) pour w G El ont même topologie.

La théorie de O. Zariski pour l'équisingularité des germes de courbes planes

assure qu'il existe un homéomorphisme TL (h/)~1(Q) —> El x T où T est le

germe de h~l(w) pour un w quelconque appartenant à El. Voir [Zar]. De

plus, T1 est tel que le diagramme suivant commute.

(/i')_1(^) ßxr
\ /

a

On en déduit que, topologiquement, (h)-1 (El) est isomorphe à Q x T, où

r est la normalisation de T.
Par conséquent si wa G O, alors (h)~l(Eï) est topologiquement lisse.

Mais c'est impossible, car (ù)_1(Q) contient l'un des points Piy image par
contraction d'une composante connexe de ad(2s — À). Nous avions observé

précédemment que Pj est vraiment singulier, ce qui implique que Pf n'est

pas topologiquement lisse, via le théorème de D. Mumford. Voir [Mum].

2e cas. Supposons maintenant que w" est une valeur spéciale qui n'est

pas une valeur constante prise par h en restriction à une composante de E.
Dans ces conditions, on a le lemme suivant.

LEMME 4.6. Le nombre de branches de est inférieur ou égal
au nombre de branches d'un germe générique.

Preuve du lemme 4.6. Soit Db une composante dicritique de E. Soit dt>

le degré de la restriction de h à D'après ce que nous avons dit ci-dessus,
il est clair qu'un germe générique possède exactement Jfdb branches, la
somme portant sur l'ensemble des composantes dicritiques de E.

Maintenant, par hypothèse sur w", la transformée stricte de h~l(w")
ne rencontre E qu'aux composantes dicritiques. Pour estimer le nombre de

branches de h~l(w") plaçons-nous en un point de contact x G Db de la
transformée stricte de h~l(w") avec Db. Soit deg(Â|^;jç) le degré local en
v de la restriction h\Db. Ce degré est égal au nombre d'intersection en x
de Db avec h~l(w"). Or, ce nombre d'intersection est inférieur ou égal au
nombre de branches en x de h~l(w"). Comme db est égal à Jfdßg(h\Db;x)

X

(la somme portant sur tous les points de contact x de h~x{w") avec Db) le
lemme est démontré.
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Remarques sur la preuve du lemme 4.6.

1. Supposons que D^ et D^ sont deux composantes dicritiques distinctes

et que Dh H Dy {Q}. Supposons que w" — h(Q). Alors le nombre
de branches de h~l(w") est strictement inférieur au nombre générique de

branches. En effet, dans la formule d'Hurwitz les branches de h~~l(w") en Q

interviennent à la fois pour Dt, et pour D&.

2. Il y a égalité entre le nombre de branches de h~l(w") et le nombre

générique de branches si et seulement si :

i) w" n'est pas égal à h(Q) pour un point Q qui est intersection de deux

dicritiques.

ii) en chaque point de contact de la transformée stricte de h~l(w") avec un

dicritique, cette transformée stricte est composée de branches lisses, toutes

transverses au dicritique.

Dans tous les cas où il y a inégalité stricte, la démonstration du théorème

est achevée car, banalement, deux germes topologiquement équivalents ont le

même nombre de branches.

Reste donc finalement le cas où il y a égalité entre les nombres de branches.

Alors un calcul direct basé sur la méthode de C. Clemens et N. A'Campo
(voir [A'C]) montre que le nombre p de Milnor de h~l(w") est strictement

supérieur au p générique. Plus précisément, on a le résultat suivant.

LEMME 4.7. Soit w" une valeur spéciale satisfaisant les conditions de

la remarque 2 ci-dessus. Alors la différence entre le p de Milnor p" de

h~l(w") et le p générique /igen est donnée par p!' — pgQn t= Efe + Px i)
la somme portant sur tous les points de contact x de la transformée stricte
de h~l(w") avec les dicritiques. Le nombre cx est le nombre de branches en

x et px est le p de Milnor du germe de courbe en x.

Remarque sur la preuve du théorème 4.1. On pourrait objecter à

la démonstration que nous venons de donner qu'elle traite un peu légèrement
le cas des germes du pinceau qui ne sont pas réduits. Supposons donc que

w G P1 est tel que le germe h(z) w n'est pas réduit. Il est facile de voir

que w est une valeur spéciale. On affirme que w ^ Q. Il y a pour cela

tout d'abord une raison idéologique. En effet, la topologie d'un germe non
nécessairement réduit est représentée par un entrelacs dont chaque composante
est affectée d'un poids entier > 0 qui représente la multiplicité d'un point
générique de la branche correspondant à la composante considérée. Comme un

germe générique est réduit, l'entrelacs avec poids correspondant à h(z) w
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ne peut pas être isomorphe à l'entrelacs d'un germe générique. Mais en fait

l'entrelacs réduit d'un germe non réduit ne peut pas non plus être isomorphe

à l'entrelacs d'un germe générique. En effet, s'il existe une composante Da

de E telle que la restriction de h à Da est constante, la démonstration donnée

s'applique sans changement. Sinon, comme au moins une branche du germe

h(z) — w est non réduite, la preuve du lemme 4.6 montre que ce germe a un

nombre de branches strictement inférieur au nombre de branches d'un germe

générique.

Remarque sur le théorème 4.5. On a vu que P est l'éclatement de

l'idéal (h\, h2) engendré par h\ et h2. On sait alors que la composition Pon de

P avec la normalisation n: E —» £ est aussi l'éclatement d'un idéal qui n'est

autre que la clôture intégrale 7 de l'idéal (h\.h2) dans l'anneau analytique
local régulier de dimension deux Ou,0- Au sens de Zariski-Samuel (voir
l'appendice 5 de [Z-S]) l'idéal 7 est un idéal complet. Par définition (voir [Sp])
les singularités de E sont des singularités sandwich. Notre construction donne
à partir de la résolution de h\h2 la résolution minimale de ces singularités
sandwich. Inversément, si 7 C Ou.0 est un idéal complet et si h\ et h2 sont
des éléments superficiels de 7 (voir [Z-S] vol. 2, p. 285) tels que la multiplicité
de l'idéal (h\.h2) est égale à celle de 7, un théorème de Rees montre que 7

est la clôture intégrale de (h\, h2). De ceci résulte que toutes les singularités
sandwich sont obtenues après normalisation d'un système linéaire de germes
de courbes planes.

§5. Bonnes composantes dicritiques

Comme indiqué dans l'introduction, notre point de vue sur la C°-suffisance
est le suivant. Le germe / étant donné, nous cherchons une condition sur la
multiplicité de g pour que les germes f-Xg 0 aient tous la même topologie,
quel que soit A G C. Considérant le pinceau gf - Xg 0 nous cherchons
donc à savoir quand son ouvert d'équisingularité £2 contient C P1 \ {oo}.

Remarque. Il découle facilement de la description des valeurs spéciales
donnée au paragraphe 4 que l'ouvert d'équisingularité d'un pinceau est égal
à P1 tout entier si et seulement si:

1. le pinceau est résolu en un seul éclatement;

2. le degré de h\j) > P1 est égal à 1, où D est le dicritique créé par
l'éclatement.
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