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$4. L OUVERT D’EQUISINGULARITE D’UN PINCEAU LOCAL

Dans ce paragraphe, nous donnons une preuve détaillée du théoreme
suivant, qui caractérise 1’ouvert d’équisingularité d’un pinceau local.

THEOREME 4.1. Soient h; et hy comme au début du paragraphe 2. Soient
w et w' deux points de P'. Alors:

1. Les germes h™'(w) et h=Y(w') ont méme topologie si w et w' sont
génériques.

2. Les germes h=Y(w) et h=Y(w"”) n’ont pas la méme topologie si w
est générigque et si w' est spécial.

Commencons par énoncer une proposition qui est un cas particulier d’un
phénomene bien plus général.

PROPOSITION 4.2. Soient h; et hy, comme au début du paragraphe 2.
Alors il existe un ouvert non-vide Q C P! ayant les propriétés suivantes :

1. Siwetw €Q les germes h='(w) et h='(w') ont la méme topologie.

2. SiweQ etsiw' ¢Q les germes h™'(w) et h='(w") n’ont pas la
méme topologie.

DEFINITION. L’ouvert Q est appelé 'ouvert d’équisingularité du pinceau.

COMMENTAIRE. Le théoreme 4.1 affirme que l'ouvert d’équisingularité
coincide avec I’ouvert des valeurs génériques (ce dernier étant défini comme
le complémentaire de l’ensemble des valeurs spéciales, définies au début
du §3). Un point important est que 1’on a affaire a un ouvert (de Zariski).

Soit p: P! — N U {+oc} la fonction qui associe a chaque w € P! le
nombre de Milnor du germe A~ !(w), en convenant que le nombre de Milnor
d’un germe non réduit vaut +oo.

LEMME 4.3. La fonction [ est semi-continue supérieurement.

Preuve du lemme 4.3.  Rappelons que la semi-continuité supérieure signifie
ceci. Pour tout w € P! il existe un ouvert W contenant w, tel que pour tout
w' € W on ait u(w) > pw').

| .
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Fixons w € P'. Soit S une petite sphére de Milnor pour le germe A~ ! (w).
Rappelons que I’équation de ce germe est f, = wyh; — wihy = 0. Soit
z=(z1,22) € C*. Posons Oi(f,,) = %fTw pour i =1,2.

Le nombre p de Milnor est le nombre d’intersection a I'origine de
O(fw) = 0 avec 0Or(f,) = 0. Maintenant, quitte a restreindre S, on
peut supposer que S est aussi une spheére de Milnor pour le germe
(al(fw)) (ag(fw)) = 0. Par le théoreme de Lefschetz, u est aussi le
coefficient d’enlacement dans S de I'entrelacs orienté (9;(f,,) = 0) NS avec
I’entrelacs (02(fw) = O) nsS.

Si w’ est proche de w, 0;(f,') =0 coupe S transversalement (i = 1,2)
et le coefficient d’enlacement dans S des entrelacs associés est égal a
celui de 0;(f,) = 0 (invariance du coefficient d’enlacement par homotopie).
Toujours par le théoreme de Lefschetz, le coefficient d’enlacement dans S
de (01(fw) = 0) NS avec ((fu) = 0) N S est égal a la somme des
nombres d’intersection de 0;(f,) = 0 avec 0»(f,r) = 0 en leur divers points
d’intersection dans la boule B dont le bord est la sphere §. Comme ces
nombres d’intersection sont strictement positifs, on a bien I’inégalité annoncée
si ’on considere le nombre d’intersection de

I(fw)=0 avec h(fw)=0

en l'origine. [

Preuve de la proposition 4.2.  Soit jmiy la valeur minimum prise par la
fonction : P! — NU {+0oc}. 1l résulte de la semi-continuité que ’ensemble
des w € P! tels que w(w) = fmin est un ouvert (non-vide) que nous
notons €.

Le théoreme p-constant de L€ (pour les germes de courbes planes) dit
que pour tous les w € £, les germes h~!'(w) ont la méme topologie.
Voir [Le].

Finalement, pour w € Q et pour w” ¢ Q, la topologie de A~ !(w) ne
peut &tre celle de A~ !(w”) puisque les nombres p de Milnor sont différents.
Ceci résulte du théoreme de J. Milnor et V. Palamadov qui affirme que la
codimension de 1’idéal jacobien est €gale au premier nombre de Betti de la
fibre de Milnor. Voir [Mil] appendice B et [Pala].  []

Poursuivons nos préparatifs en vue de démontrer le théoreme 4.1. Soient a
nouveau h; et h, comme au début du paragraphe 2. Dans U x P! considérons
la surface X d’équation nh; —Ahy = 0. La restriction a 2 des deux projections
de U x P! sur chacun des facteurs fournit deux morphismes P: £ — U et
¥ — P! tels que le diagramme suivant commute :
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b3

N

P

U _t, P!

Le morphisme P est I’éclatement de ’idéal engendré par h; et hy. Il est
facile de voir que Plp-iy—fo3) — U — {0} est un isomorphisme tandis que
P~1(0) = {0} x P'. Par conséquent, P leéve 'indétermination de & et c’est
la fagon la plus «économique» de le faire. Mais le «hic» est que X est une
surface tres singuliere qui n’est pas normale en général.

Nous allons maintenant comparer P: £ — U avec la résolution minimale
p: U — U construite au paragraphe 2.

Pour cela, considérons le lieu exceptionnel E = p~!(0). Dans E, soit
A la réunion des composantes dicritiques. Considérons ensuite la différence
E — A et son adhérence ad(E — A). Cette dernieére est 1’'union disjointe de
ses composantes connexes Ci,...,Cy. La configuration de chaque C; est
représentée par un sous-graphe connexe (en fait un arbre) de D'arbre de
configuration de E. Apres tout, p: U—U peut €tre considérée comme une
résolution du point lisse 0 € U. Par le théoreme de P. du Val et D. Mumford,
la forme intersection associée a E est négative définie. Voir [H-N-K] p. 86.
Par restriction, la forme intersection associée a chaque C; est aussi négative
définie.

Soit alors X le quotient de U obtenu en identifiant chaque C; en un
point (disons P;). Par le théoréme de H. Grauert, X peut €tre muni d’une
(unique) structure d’espace analytique normal. (Voir [Gr].) Par construction,
la restriction de 4 & chaque C; est constante. On en déduit que A passe au
quotient et fournit un morphisme s: ¥ — P!'. Pour la méme raison, on a un
morphisme n: X — T tel que le diagramme suivant commute :

)

[
h, 1

2 —— P

PROPOSITION 4.4. n:Y — ¥ est la normalisation de X.

Preuve de la proposition 4.4. Par construction, 1’espace analytique X
est normal. Il est facile de vérifier que n est un morphisme fini et

est un isomorphisme en restriction a un ouvert dense de points lisses.
(Voir [Lo].) [
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Observons que dans la courbe C; aucune composante irréductible n’a self-
intersection égale a —1, par minimalité de la résolution p. On en déduit
que chaque point P; € T est un point vraiment singulier et que {P;} pour
i=1,...,k est la liste complete des points singuliers de X. Par conséquent,
la projection g: U — % est la résolution minimale des singularités de X. En
résumé, nous obtenons donc le théoréme suivant.

THEOREME 4.5. Il y a un grand diagramme commutatif:

A

U

q

=

:
J
|

h
——— P!
ou n est la normalisation de X et ou q est la résolution minimale des
singularités de X.

Preuve du théoréme 4.1. Soient donc w et w’ deux valeurs génériques.
Il est clair que A='(w) et h~!'(w') ont la méme topologie. En effet, leurs
transformées strictes par la résolution minimale p de h passent uniquement par
les composantes dicritiques, qu’elles rencontrent de facon lisse et transverse.
De plus, pour une composante dicritique D donnée, le nombre de points
de contact de la transformée stricte de A~ !(w) avec D est égal au nombre
de points de contact de la transformée stricte de h= Y w") avec D. En effet,
ces deux nombres sont égaux au degré de ’application ﬁlD — P! Les deux
germes ont donc la méme résolution et, par conséquent la méme topologie.

Soient maintenant w” une valeur spéciale et w une valeur générique. Par
construction A~ '(w”) et h~'(w) n’ont pas la méme résolution. Mais il se
pourrait tout de méme que leurs arbres de résolution soient isomorphes. Nous
allons montrer (et c’est 1a I’essentiel de la démonstration du théoreme) qu’il
n’en est rien.

1¢" cas. Soit D, une composante irréductible de E = p~1(0) telle que la
restriction de 4 a D, soit constante. Soit w, € P! la valeur A(D,). Raisonnons
par I’absurde en supposant que w, € £2.

-
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Tout d’abord, nous avons observé précédemment que € est un ouvert de
P!. Par construction tous les germes 2~ !(w) pour w € Q ont méme topologie.
La théorie de O. Zariski pour I’équisingularité des germes de courbes planes
assure qu’il existe un homéomorphisme ¥': (4’ Q) — QxT ou I estle
germe de h~!(w) pour un w quelconque appartenant a €2. Voir [Zar]. De
plus, W est tel que le diagramme suivant commute. ’

WYy Q) —Fo axT

N /
Q

On en déduit que, topologiquement, ()~ 1(€2) est isomorphe & Q x T, ol
I — T est la normalisation de T .

Par conséquent si w, € €2, alors (h)~(Q) est topologiquement lisse.
Mais c’est impossible, car (h)~!(€)) contient I'un des points P;, image par
contraction d’une composante connexe de ad(E — A). Nous avions observé
précédemment que P; est vraiment singulier, ce qui implique que P; n’est
pas topologiquement lisse, via le théoreme de D. Mumford. Voir [Mum)].

2¢ cas. Supposons maintenant que w” est une valeur spéciale qui n’est

pas une valeur constante prise par s en restriction a une composante de E.
Dans ces conditions, on a le lemme suivant.

LEMME 4.6. Le nombre de branches de h™'(w'") est inférieur ou égal
au nombre de branches d’un germe générique.

Preuve du lemme 4.6. Soit D;, une composante dicritique de E. Soit d,
le degré de la restriction de 4 a D,. D’apres ce que nous avons dit ci-dessus,
il est clair qu’un germe générique possede exactement »  dj, branches, la
somme portant sur ’ensemble des composantes dicritiques de E.

Maintenant, par hypotheése sur w”, la transformée stricte de A~ !(w")
ne rencontre £ qu’aux composantes dicritiques. Pour estimer le nombre de
branches de h~'(w') plagons-nous en un point de contact x € D, de la
transformée stricte de h~!(w') avec D,. Soit deg(ﬁ|Db;x) le degré local en
x de la restriction /|p,. Ce degré est égal au nombre d’intersection en x
de D), avec h~'(w"). Or, ce nombre d’intersection est inférieur ou égal au

nombre de branches en x de A~ !'(w”). Comme d; est égal a Zdeg(ﬁ\ Dy X)
X
(la somme portant sur tous les points de contact x de A~ !(w”) avec Dy) le

lemme est démontré. L]
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REMARQUES SUR LA PREUVE DU LEMME 4.6.

1. Supposons que D, et D, sont deux composantes dicritiques distinctes
et que D, N Dy = {Q}. Supposons que w” = A(Q). Alors le nombre
de branches de A~ !(w") est strictement inférieur au nombre générique de
branches. En effet, dans la formule d’Hurwitz les branches de A~ '(w”) en O
interviennent a la fois pour D, et pour Dy .

2. 11y a égalité entre le nombre de branches de A~ !(w") et le nombre
générique de branches si et seulement si:

i) w” n’est pas égal a4 A(Q) pour un point Q qui est intersection de deux
dicritiques. (

ii) en chaque point de contact de la transformée stricte de h~!(w") avec un
dicritique, cette transformée stricte est composée de branches lisses, toutes
transverses au dicritique.

Dans tous les cas ou il y a inégalité stricte, la démonstration du théoreme
est achevée car, banalement, deux germes topologiquement équivalents ont le
méme nombre de branches.

Reste donc finalement le cas ou il y a €galité entre les nombres de branches.
Alors un calcul direct basé sur la méthode de C. Clemens et N. A’Campo
(voir [A’C]) montre que le nombre 1 de Milnor de A~ !(w') est strictement
supérieur au p générique. Plus précisément, on a le résultat suivant.

LEMME 4.7. Soit w” une valeur spéciale satisfaisant les conditions de
la remarque 2 ci-dessus. Alors la différence entre le | de Milnor ' de
RN (w") et le p générique [igen est donnée par | — pigen = Y (Cx + py — 1)
la somme portant sur tous les points de contact x de la transformée stricte
de h=Y(w") avec les dicritiqgues. Le nombre c, est le nombre de branches en
X et ly, est le p de Milnor du germe de courbe en x.

REMARQUE SUR LA PREUVE DU THEOREME 4.1. On pourrait objecter a
la démonstration que nous venons de donner qu’elle traite un peu légerement
le cas des germes du pinceau qui ne sont pas réduits. Supposons donc que
w € P! est tel que le germe h(z) = w n’est pas réduit. Il est facile de voir
que w est une valeur spéciale. On affirme que w ¢ Q. Il y a pour cela
tout d’abord une raison idéologique. En effet, la topologie d’un germe non
nécessairement réduit est représentée par un entrelacs dont chaque composante
est affectée d’un poids entier > O qui représente la multiplicité d’un point
générique de la branche correspondant a la composante considérée. Comme un
germe générique est réduit, ’entrelacs avec poids correspondant a h(z) = w
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ne peut pas étre isomorphe & 'entrelacs d’un germe générique. Mais en fait
I’entrelacs réduit d’un germe non réduit ne peut pas non plus étre isomorphe
a entrelacs d’un germe générique. En effet, s’il existe une composante D,
de E telle que la restriction de i A D, est constante, la démonstration donnée
s’applique sans changement. Sinon, comme au moins une branche du germe
h(z) = w est non réduite, la preuve du lemme 4.6 montre que ce germe a un
nombre de branches strictement inférieur au nombre de branches d’un germe
générique. :

REMARQUE SUR LE THEOREME 4.5. On a vu que P est I’éclatement de
I’idéal (hy, hy) engendré par h; et hy. On sait alors que la composition Pon de
P avec la normalisation n: £ — X est aussi 1’éclatement d’un idéal qui n’est
autre que la cloture intégrale I de 1’idéal (h;,h) dans ’anneau analytique
local régulier de dimension deux Opy,. Au sens de Zariski-Samuel (voir
I’appendice 5 de [Z-S]) I’idéal I est un idéal complet. Par définition (voir [Sp])
les singularités de X sont des singularités sandwich. Notre construction donne
a partir de la résolution de hjhy la résolution minimale de ces singularités
sandwich. Inversément, si / C Oy, est un idéal complet et si h; et h, sont
des €léments superficiels de [ (voir [Z-S] vol. 2, p. 285) tels que la multiplicité
de I'idéal (h;,hy) est égale a celle de 7, un théoréme de Rees montre que /
est la cloture intégrale de (h;,hy). De ceci résulte que toutes les singularités
sandwich sont obtenues apres normalisation d’un systeme linéaire de germes
de courbes planes.

§5. BONNES COMPOSANTES DICRITIQUES

Comme indiqué dans I’introduction, notre point de vue sur la C%-suffisance
est le suivant. Le germe f étant donné, nous cherchons une condition sur la
multiplicité de g pour que les germes f—Ag = O aient tous la méme topologie,
quel que soit A € C. Considérant le pinceau 7nf — Ag = 0 nous cherchons
donc a savoir quand son ouvert d’équisingularité Q contient C = P!\ { o0},

REMARQUE. Il découle facilement de la description des valeurs spéciales
donnée au paragraphe 4 que I’ouvert d’équisingularité d’un pinceau est égal
a P! tout entier si et seulement si:

1. le pinceau est résolu en un seul éclatement;

2. le degré de Alp — P! est égal a 1, ou D est le dicritique créé par
I’éclatement.

R
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