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L'Enseignement Mathématique, t. 43 (1997), p. 355-380

ÉQUISINGULARITÉ DANS LES PINCEAUX

DE GERMES DE COURBES PLANES

ET C°-SUFFISANCE

par LÊ Dung Trang et Claude WEBER l)

§1. Introduction

Soient /o et f\ deux germes de fonction holomorphe à l'origine de C2. On

suppose que les deux germes s'annulent à l'origine et sont à singularité isolée.

Traditionnellement on dit que /o et f\ sont topologiquement équivalents s'il
existe un germe d'homéomorphisme O: (C2,0) -» (C2,0) de degré +1, tel

que l'on ait /o o O f\.
On peut démontrer que les deux germes sont topologiquement équivalents

si et seulement si les entrelacs orientés qui leur sont associés dans une petite
sphère de Milnor sont isotopes. Voir [Saeki] et les références qui s'y trouvent.

Dans [E-N] D. Eisenbud et W. Neumann donnent une façon de coder

l'entrelacs de Milnor associé à un germe / par un diagramme d'épissure
(«splicing diagram»), qui est une version plus élaborée des anciens câblages.

Une autre façon de se donner le type topologique de l'entrelacs de Milnor
consiste à utiliser l'arbre de la résolution minimale de /. Ce faisant, on décrit
la configuration du lieu exceptionnel de la résolution en indiquant comment
les composantes irréductibles se coupent et quelle est la self-intersection de

chaque composante. On indique en plus, par des flèches en quantité adéquate,
combien de fois chaque composante est coupée par la transformée stricte de

/ 0. Pour plus de détails voir [B-K].
Dans tout ceci, le fait que les germes sont à singularité isolée n'est

pas essentiel. Pour décrire la topologie d'un germe à singularité non isolée
il convient d'indiquer pour chaque composante de l'entrelacs (resp. pour

1

Les auteurs remercient le Fonds National Suisse de la Recherche Scientifique de son
soutien financier.

fe-



356 LÊ D.T. ET C. WEBER

chaque flèche) quelle est la multiplicité d'un point générique de la branche

correspondante dans l'équation / 0. Ceci conduit aux entrelacs pondérés

(« multilinks » chez Eisenbud-Neumann).

Soient maintenant h\ =0 et A2 0 deux germes de courbes planes
s'annulant à l'origine, sans branche commune. La famille de germes de courbes

planes w2Ai — W\h2 0 avec w — (w\ : W2) G P1 est par définition le pinceau
de germes de courbes planes engendré par h\ et A2. Un cas particulier d'un
théorème général sur les déformations (dû à O. Zariski) affirme qu'il existe

un ouvert de Zariski non vide flcP1 tel que les éléments correspondants du

pinceau ont tous la même topologie. L'ouvert maximal ayant cette propriété
s'appelle l'ouvert d'équisingularité du pinceau, tandis que son complémentaire
est l'ensemble (fini) des valeurs spéciales.

Dans la première partie de ce travail, nous énonçons et démontrons un
théorème (théorème 4.1) qui caractérise explicitement l'ensemble des valeurs

spéciales en fonction de la résolution minimale du pinceau. Nous décrivons

la résolution minimale au paragraphe 2 et parlons des valeurs génériques au

paragraphe 3. La preuve du théorème (en fait sa partie la plus facile) permet
de déterminer explicitement la topologie d'un membre générique du pinceau

en fonction de la topologie (colorée) de l'entrelacs associé à /zj/z2 0. Voir
la remarque à la fin du §3.

La deuxième partie de ce travail (basée sur la première) est consacrée au

degré de C°-suffisance d'un germe de courbe plane. Voici de quoi il s'agit.
Soit / G C{V, Y} avec /(0) 0. Le jet d'ordre r de /, noté j(r)(/), est

dit topologiquement suffisant si, quel que soit g G mr+1, le germe / est

topologiquement équivalent au germe / + g. Bien sûr, il existe une définition

analogue pour les germes à n variables. Le degré de C°-suffisance Suff(/) de

/ est le minimum des r tels que le jet y(r)(/) est topologiquement suffisant.

Soit maintenant tt: X —> C2 la résolution minimale de /. Soit E — tt—1 (0)

le lieu exceptionnel de la résolution. Choisissons une composante irréductible

D do E. Une curvette de D en un point P G D lisse dans la transformée

totale de / 0 est un germe 7 en P de courbe lisse et transverse à D. Ce

germe est la transformée stricte d'une branche (c'est-à-dire d'une composante

analytiquement irréductible) 7* en l'origine de C2.

Par définition, le quotient d'Hironaka qD de D est le nombre rationnel

positif égal à I(f 0,7*)//(À, 7*) où À est une droite transverse à / 0 et à

7*. Ici /(—,—) désigne le nombre d'intersection de deux germes à l'origine.
Il est facile de voir que ce nombre ne dépend que de la composante D.
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Définition. Une composante D de E est appelée une composante de

rupture si elle rencontre au moins trois composantes de la transformée totale

de / 0 par tt

Le calcul du degré de C°-suffisance est établi par le théorème suivant.

THÉORÈME 7.3. Supposons que f est à singularité isolée à l'origine de

C2. Alors Suff(/) est égal au maximum des parties entières \qo] °ù D

parcourt l'ensemble des composantes de rupture de E.

Remarque. Le théorème 3.2 de [L-M-W2] (que nous appellerons
théorème de croissance) implique qu'il suffit pour calculer Suff(/) de considérer

les composantes de rupture D qui contiennent au moins un point de

contact de la transformée stricte de / 0. Le nombre de composantes D
à considérer est donc inférieur ou égal au nombre de branches de /. En

particulier, il n'y a qu'un seul quotient d'Hironaka à calculer si / est analy-

tiquement irréductible.

Notre approche est basée sur l'idée suivante (tellement simple qu'elle
peut sembler trop naïve). Nous cherchons des conditions sur la multiplicité
de g pour que les germes f — Xg 0 du pinceau rjf — Xg — 0 aient la
même topologie, quel que soit À G C. Pour cela, nous utilisons à fond la
détermination de l'ouvert d'équisingularité faite dans la première partie de ce
travail.

§2. ÉLIMINATION DE L'INDÉTERMINATION LOCALE

D'UNE FONCTION MÉROMORPHE À DEUX VARIABLES

Soit U un domaine (^ouvert connexe) de C2 contenant l'origine. Soient
h\ et h2\ U — C deux fonctions holomorphes, avec /z,(0) 0 pour i 1,2.
On suppose que l'origine est le seul zéro commun à h{ et h2 dans U.

Ceci étant posé, on considère la fonction h jp • La fonction méromorphe h
est définie en tout point z e U différent de l'origine et peut être interprétée
comme une application h: U P1 définie par h(z) (h\(z) : h2(z)).

Pour chaque w G P1, l'équation w2h\ — w\h2 - 0 définit un germe de
courbe plane que l'on désignera par h(z) w ou par L'ensemble des

germes h(z) w pour f G P1 est le pinceau (local) de germes de courbes
planes associé à la fonction méromorphe h.
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Une modification de U (au-dessus de l'origine) est pour nous une

composition de morphismes d'éclatements de points dont les centres se

projettent sur l'origine. Une modification p: U -» U telle que hop est un

morphisme (c'est-à-dire est définie partout) est, par définition, une résolution de

h. On dit aussi que p lève l'indétermination de h. En termes de pinceaux, dire

que p est une résolution signifie que les courbes (hop)'"1 (m) et (hop)~l(wf)
sont disjointes si w est distinct de w'. Autrement dit, on a «résolu» la famille
de germes {h(z) te} dans l'ancien sens du verbe «résoudre» qui veut dire
«diviser en ses parties constituantes».

Nous allons montrer que, pour toute fonction méromorphe telle que /z,

il existe des résolutions. Parmi celles-ci, il y en a une qui est minimale et

que nous décrirons. Un tel énoncé est connu depuis des décennies. Nous en

proposons une démonstration qui a l'avantage d'être géométriquement très

explicite. La démonstration elle-même joue un rôle clef dans la suite de ce

travail.

Pour l'instant, considérons une modification quelconque p: U —> U.
L'ensemble p~l(0) est appelé le lieu exceptionnel de la modification. Soit
D une composante irréductible du lieu exceptionnel. Pour i 1,2 on

définit Vi(D) comme étant la multiplicité de ht o p le long de D. Posons

v(D) v\(D) — V2(D). Si v(D) est strictement positif, D appartient au

support du diviseur Z des zéros de hop. Si v(D) est strictement négatif,
D appartient au diviseur P des pôles de hop. Autrement dit, on a

(h o p) (h\ o p) — (h2 o p) Z + P. Une composante D du lieu exceptionnel
de p est dite dicritique si la restriction h o p\D est non constante. Une

condition nécessaire, mais non suffisante, pour que D soit dicritique est que
v(D) soit égal à zéro. Si v(D) 0 sans que D soit dicritique, la restriction
de la fonction h o p à D est constante, de valeur différente de 0 et de

l'infini oo.

PROPOSITION 2.1. Il existe une résolution de h.

Preuve de la proposition 2.1. Considérons la fonction holomorphe
h\h2 : U —* C. Soit p: U —> U une modification de U qui résout la singularité
de h \ h2 à l'origine. Voir par exemple [B-K] §8.4. Soit ((h{h2) o p^)~l(0) la

transformée totale et soit S son support. Les points d'indétermination de hop
sont situés au point d'intersection Q de deux composantes Si et S2 de S

pour lesquelles on a v(S]) > 0 et v(S2) < 0. Définissons alors la complexité
du point Q comme étant c(Q) \v(S\) -f u(S2)|. Eclatons le point Q. Soit
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S3 le lieu exceptionnel de ce nouvel éclatement et soit p' la projection de

l'éclatement de Q suivie de p. Soit v(S3) la multiplicité de la fonction ho p'

le long de S3. On a v(S3) v(Sx) + v(S2) Soit Q} le point d'intersection de

(la transformée stricte de) S, avec S3 pour i 1,2.

Si v(S3) 0, aucun des deux points Qx n'est d'indétermination (et en

fait S3 est une composante dicritique). Si v(S3) > 0 alors Q2 est un point

d'indétermination; tandis que si v(S3) < 0 c'est Q\ qui est d'indétermination.

Mais, de toute façon, la complexité du nouveau point d'indétermination est

strictement inférieure à c(Q).

En un nombre fini d'éclatements on résout donc la singularité en Q.

Comme il n'y a qu'un nombre fini de points d'indétermination tels que Q,

ceci achève la preuve de la proposition 2.1.

Soit p\ U —» U une résolution de h et soit À l'ensemble de ses

composantes dicritiques.

DÉFINITION. Une résolution de h est dite minimale si les composantes
du lieu exceptionnel qui n'appartiennent pas à À sont de self-intersection

différente de — 1.

Supposons que la résolution p\ U —>• U de h n'est pas minimale. Soit

D une composante du lieu exceptionnel dont la self-intersection vaut — 1.

Par définition, la restriction de h o p à D est constante. Par conséquent,
la modification p' : U' —* U obtenue à partir de p en contractant D est

encore une résolution de h. En revanche, on n'aurait plus une résolution
de h si l'on contractait une composante dicritique de self-intersection — 1.

En effet, le point image du dicritique dans le contracté est un point
d'indétermination puisque la restriction de la fonction au dicritique est non-
constante.

PROPOSITION 2.2. Il existe une résolution minimale et cette résolution est

unique à isomorphisme près.

Preuve de la proposition 2.2. L'existence résulte immédiatement de ce

que nous venons de faire. En effet, il suffit de prendre la résolution fournie
par la preuve de la proposition précédente et de contracter, tant qu'il en
reste, les composantes non dicritiques de self-intersection -1. (La résolution
construite dans la preuve de la proposition précédente n'est pas nécessairement
minimale.)
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L'unicité résulte d'arguments bien connus de la théorie des surfaces

complexes. Une bonne référence est fournie par le livre de H. Laufer; voir
[La] à partir de la page 87. Le fait que l'auteur s'intéresse à la résolution
des singularités normales de surfaces plutôt qu'à la résolution des fonctions

méromorphes n'est pas essentiel.

Remarque. Le théorème d'unicité permet de donner un sens à la

phrase suivante : « Deux résolutions de h ont les "mêmes" composantes

dicritiques ». En effet, on passe d'une résolution à une autre par une
suite finie d'éclatements et de contractions sans toucher aux composantes

dicritiques.

§3. Valeurs spéciales d'un pinceau de germes
DE COURBES PLANES

Soit p: U —* U la résolution minimale de la fonction méromorphe h.
Posons h h o p.

DÉFINITION. L'ensemble (fini) des valeurs spéciales de h est formé:

i) des valeurs h\oa où Da parcourt l'ensemble des composantes non

dicritiques de E p~l(0). Remarquer que la restriction de h à Da

est constante par définition.

fi) des valeurs critiques de h\Dh où D^ parcourt l'ensemble des composantes

dicritiques de E.

iii) des valeurs h{Q) où Q est un point d'intersection entre deux

dicritiques.

Par définition une valeur non spéciale est générique. Si w est une valeur

générique, le germe de courbe h~l(w) est, par définition, un membre générique
du pinceau. Sinon, c'est un membre spécial.

AFFIRMATION 1. N'importe quelle résolution de h est une résolution du

germe de courbe h~l(w) pour w générique.

En fait on a mieux :
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AFFIRMATION 2. N'importe quelle résolution de h est une résolution de
171

n'importe quel germe (J h *(u/) où les w1 sont m voleurs génériques deux

i= 1

à deux distinctes.

Preuve des deux affirmations. Si w est une valeur générique, par définition

(h)~l(w) ne rencontre aucune composante Da non dicritique. Soit alors Db

une composante dicritique et soit z e Db un point d'intersection de

avec Db. En vertu de la condition iii) portant sur les valeurs spéciales, le

point z est un point lisse de Db dans E. Comme la restriction h\ob n'a

pas de point critique en z, la courbe est lisse et transverse à Db

en z.

Le même argument démontre aussi l'affirmation 2, car si w est distinct

de w' les points de contact de (h)~l(w) avec Db sont nécessairement

distincts de ceux de avec Db puisque h n'a plus de point
d'indétermination.

L'affirmation suivante se démontre en suivant un raisonnement semblable.

AFFIRMATION 3. La résolution minimale de h est la résolution minimale

d'un germe h~l(w) U h~l(w') où w et w' sont deux valeurs génériques
distinctes.

REMARQUE. Nous venons de voir que la résolution minimale de h est

(entre autres choses) une résolution de n'importe quel germe générique. En

revanche, elle n'est pas nécessairement une résolution d'un germe spécial.

Maintenant, supposons que h[ et h2 sont des germes génériques du pinceau.
Alors la résolution construite dans la preuve de la proposition 2.1 est la
résolution minimale de h si l'on démarre avec la résolution minimale de

h\h2. Si le germe h\ (et/ou le germe h2) est spécial, la résolution de la
proposition 2.1 n'est pas nécessairement minimale. A posteriori, on constate
qu'elle l'est si et seulement si (et/ou h2) sont résolus par la résolution
minimale de h).

Soit maintenant p\ Ù —» U la résolution minimale de h construite au
paragraphe 2.
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PROPOSITION 3.1. Les composantes dicritiques de E p !(0) sont les

composantes D telles que :

1. v(D) 0.

2. D rencontre au moins une composante D' de support de Z et une

composante D" du support de P.

Preuve. Les conditions sont nécessaires. En effet, si D est dicritique, D ne

peut appartenir ni au support des zéros ni au support des pôles, ce qui implique
que v(D) 0. Comme la restriction de /z à une composante dicritique D est

nécessairement surjective (puisque non constante et holomorphe) la valeur 0

et la valeur oo sont prises par h\D.

Réciproquement, nous savons déjà que v(D) 0 implique soit que D est

dicritique, soit que la restriction h\D est constante et de valeur distincte de 0 ou
de oo. La condition 2 rend impossible la deuxième branche de l'alternative.

Remarques.

1) La preuve indique que la composante D est dicritique si et seulement
si v(D) 0 et D rencontre le support de Z ou le support de P.

2) La proposition précédente a un certain intérêt pratique. Il est facile en

effet de construire des fonctions méromorphes où toutes les composantes du

lieu exceptionnel de la résolution minimale ont valuation v nulle.

La remarque suivante est une parenthèse dans cet article. Elle résulte

immédiatement du paragraphe 2 et de la proposition précédente.

Remarque. Soient h\ et h2: U —> C comme au §2. Tautologiquement,
h\ et h2 déterminent le pinceau qu'elles engendrent Mais ce que nous venons
de faire démontre ceci. La topologie locale de h\h2 0 (où l'on colore les

composantes de h\ =0 d'une certaine couleur et celles de h2 0 d'une
autre couleur; nous parlerons dans ces circonstances de topologie colorée)
détermine la topologie colorée de h\h2hg&n 0. Par hgen on désigne un
membre générique du pinceau (équipé d'une troisième couleur). De plus le

procédé que nous avons donné est effectif. Entre autres choses, la topologie
de /Zgen peut être déterminée effectivement à partir de la topologie colorée

de h\h2 — 0. De même, la topologie colorée de h\h2hgen hgen 0 est

déterminée, où les hlgm sont m membres génériques, deux à deux distincts,
du pinceau. Finalement, observons que tout ceci fonctionne si les générateurs

hi (.i 1,2) du pinceau ne sont pas réduits.

Nous conseillons au lecteur de faire des tests sur quelques exemples. Voir
aussi le paragraphe 6 (surtout la fin).
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§4. L'OUVERT D'ÉQUISINGULARITÉ D'UN PINCEAU LOCAL

Dans ce paragraphe, nous donnons une preuve détaillée du théorème

suivant, qui caractérise l'ouvert d'équisingularité d'un pinceau local.

THÉORÈME 4.1. Soient h\ et h2 comme au début du paragraphe 2. Soient

w et w' deux points de P1. Alors :

L Les germes h~l(w) et h~\w') ont même topologie si w et w' sont

génériques.

2. Les germes h~l(w) et h~1 (w/f) n'ont pas la même topologie si w

est générique et si w" est spécial.

Commençons par énoncer une proposition qui est un cas particulier d'un

phénomène bien plus général.

Proposition 4.2. Soient h\ et h2 comme au début du paragraphe 2.

Alors il existe un ouvert non-vide QcP1 ayant les propriétés suivantes :

1. Si w et w' G Ll les germes h~l(w) et h~l(w') ont la même topologie.

2. Si w G Q et si w" Q les germes h~l(w) et h~l(w") n'ont pas la

même topologie.

DÉFINITION. L'ouvert £2 est appelé l'ouvert d'équisingularité du pinceau.

Commentaire. Le théorème 4.1 affirme que l'ouvert d'équisingularité
coïncide avec l'ouvert des valeurs génériques (ce dernier étant défini comme
le complémentaire de l'ensemble des valeurs spéciales, définies au début
du §3). Un point important est que l'on a affaire à un ouvert (de Zariski).

Soit p: P1 —» N U {+00} la fonction qui associe à chaque w G P1 le
nombre de Milnor du germe h~l(w), en convenant que le nombre de Milnor
d'un germe non réduit vaut +00.

LEMME 4.3. La fonction p est semi-continue supérieurement.

Preuve du lemme 4.3. Rappelons que la semi-continuité supérieure signifie
ceci. Pour tout we P1 il existe un ouvert W contenant w, tel que pour tout
w' e W on ait p(w) > p(w').
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Fixons w G P1. Soit S une petite sphère de Milnor pour le germe
Rappelons que l'équation de ce germe est fw — W\h2 — 0. Soit

z (zuZ2) C C2. Posons di{fw) ^ pour î 1,2.
Le nombre p de Milnor est le nombre d'intersection à l'origine de

d\(fw) 0 avec 82(fw) 0. Maintenant, quitte à restreindre S, on

peut supposer que S est aussi une sphère de Milnor pour le germe
{pi (fw)) (02(fw)) 0- Par le théorème de Lefschetz, p est aussi le

coefficient d'enlacement dans S de l'entrelacs orienté (d\(fw) 0) P\S avec

l'entrelacs (02(Au) 0) D S.

Si w' est proche de w, 0/(/^y,) — 0 coupe S transversalement (i =1,2)
et le coefficient d'enlacement dans S des entrelacs associés est égal à

celui de di(fw) 0 (invariance du coefficient d'enlacement par homotopie).
Toujours par le théorème de Lefschetz, le coefficient d'enlacement dans S

de (0i(fw') O) fï S avec (02(A*/) 0) H S est égal à la somme des

nombres d'intersection de d\(fw>) — 0 avec 02(Au') — 0 en leur divers points
d'intersection dans la boule B dont le bord est la sphère S. Comme ces

nombres d'intersection sont strictement positifs, on a bien l'inégalité annoncée

si l'on considère le nombre d'intersection de

<9i(/«/) 0 avec d2(fw>) 0

en l'origine.

Preuve de la proposition 4.2. Soit la valeur minimum prise par la

fonction p: P1 —> NU {+00}. Il résulte de la semi-continuité que l'ensemble
des w G P1 tels que p(w) /zm|n est un ouvert (non-vide) que nous

notons £1.

Le théorème p-constant de Lê (pour les germes de courbes planes) dit

que pour tous les w G £2, les germes h~l(w) ont la même topologie.
Voir [Lê].

Finalement, pour w G £2 et pour w" £ £2, la topologie de h~l(w) ne

peut être celle de h~l{w") puisque les nombres p de Milnor sont différents.

Ceci résulte du théorème de J. Milnor et V. Palamadov qui affirme que la

codimension de l'idéal jacobien est égale au premier nombre de Betti de la

fibre de Milnor. Voir [Mil] appendice B et [Pala].

Poursuivons nos préparatifs en vue de démontrer le théorème 4.1. Soient à

nouveau h\ et comme au début du paragraphe 2. Dans fixP1 considérons

la surface Z d'équation rjh\ — À/z2 0. La restriction à E des deux projections
de C x P1 sur chacun des facteurs fournit deux morphismes P : Z — U et

h' : Z —> P1 tels que le diagramme suivant commute :
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x

p

U --->P1.
Le morphisme P est l'éclatement de l'idéal engendré par h\ et Il est

facile de voir que P|p-i(c/—{o}) —* u ~ W est un isomorphisme tandis que

p_1(0) {0} x P1. Par conséquent, P lève l'indétermination de h et c'est

la façon la plus «économique» de le faire. Mais le «hic» est que £ est une

surface très singulière qui n'est pas normale en général.

Nous allons maintenant comparer P : X -» U avec la résolution minimale

p: U —> U construite au paragraphe 2.

Pour cela, considérons le lieu exceptionnel E p_1(0). Dans E, soit

Ä la réunion des composantes dicritiques. Considérons ensuite la différence

E — À et son adhérence ad(E — À). Cette dernière est l'union disjointe de

ses composantes connexes Ci,.... Q. La configuration de chaque C, est

représentée par un sous-graphe connexe (en fait un arbre) de l'arbre de

configuration de E. Après tout, p: U —> U peut être considérée comme une
résolution du point lisse 0 EU. Par le théorème de P. du Val et D. Mumford,
la forme intersection associée à E est négative définie. Voir [H-N-K] p. 86.

Par restriction, la forme intersection associée à chaque C; est aussi négative
définie.

Soit alors X le quotient de U obtenu en identifiant chaque Q en un
point (disons Pi). Par le théorème de H. Grauert, X peut être muni d'une
(unique) structure d'espace analytique normal. (Voir [Gr].) Par construction,
la restriction de h à chaque Q est constante. On en déduit que h passe au

quotient et fournit un morphisme h : X —> P1. Pour la même raison, on a un
morphisme n : X —» X tel que le diagramme suivant commute :

X

n

E ---+ P1.

Proposition 4.4. n:X-> E est la normalisation de E.

Preuve de la proposition 4.4. Par construction, l'espace analytique E
est normal. Il est facile de vérifier que n est un morphisme fini et
est un isomorphisme en restriction à un ouvert dense de points lisses.
(Voir [Lo].)
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Observons que dans la courbe C; aucune composante irréductible n'a self-
intersection égale à — 1, par minimalité de la résolution p. On en déduit

que chaque point P; G E est un point vraiment singulier et que {P;} pour
i 1,..., k est la liste complète des points singuliers de E. Par conséquent,
la projection q: U —* £ est la résolution minimale des singularités de E. En

résumé, nous obtenons donc le théorème suivant.

THÉORÈME 4.5. Il y a un grand diagramme commutatif:

U

U---> P1

où n est la normalisation de E et où q est la résolution minimale des

singularités de E.

Preuve du théorème 4.1. Soient donc w et w' deux valeurs génériques.

Il est clair que h~l(w) et h~l(wf) ont la même topologie. En effet, leurs

transformées strictes par la résolution minimale p de h passent uniquement par
les composantes dicritiques, qu'elles rencontrent de façon lisse et transverse.

De plus, pour une composante dicritique D donnée, le nombre de points
de contact de la transformée stricte de h~l(w) avec D est égal au nombre

de points de contact de la transformée stricte de h~l(wf) avec D. En effet,

ces deux nombres sont égaux au degré de l'application h\D Les deux

germes ont donc la même résolution et, par conséquent la même topologie.
Soient maintenant w" une valeur spéciale et w une valeur générique. Par

construction h~l(w") et h~1(w) n'ont pas la même résolution. Mais il se

pourrait tout de même que leurs arbres de résolution soient isomorphes. Nous

allons montrer (et c'est là l'essentiel de la démonstration du théorème) qu'il
n'en est rien.

1er cas. Soit Da une composante irréductible de E p~l(0) telle que la

restriction de h à Da soit constante. Soit wa G P1 la valeur h(Da). Raisonnons

par l'absurde en supposant que u]flGß.
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Tout d'abord, nous avons observé précédemment que jQ est un ouvert de

P1. Par construction tous les germes h~l(w) pour w G El ont même topologie.

La théorie de O. Zariski pour l'équisingularité des germes de courbes planes

assure qu'il existe un homéomorphisme TL (h/)~1(Q) —> El x T où T est le

germe de h~l(w) pour un w quelconque appartenant à El. Voir [Zar]. De

plus, T1 est tel que le diagramme suivant commute.

(/i')_1(^) ßxr
\ /

a

On en déduit que, topologiquement, (h)-1 (El) est isomorphe à Q x T, où

r est la normalisation de T.
Par conséquent si wa G O, alors (h)~l(Eï) est topologiquement lisse.

Mais c'est impossible, car (ù)_1(Q) contient l'un des points Piy image par
contraction d'une composante connexe de ad(2s — À). Nous avions observé

précédemment que Pj est vraiment singulier, ce qui implique que Pf n'est

pas topologiquement lisse, via le théorème de D. Mumford. Voir [Mum].

2e cas. Supposons maintenant que w" est une valeur spéciale qui n'est

pas une valeur constante prise par h en restriction à une composante de E.
Dans ces conditions, on a le lemme suivant.

LEMME 4.6. Le nombre de branches de est inférieur ou égal
au nombre de branches d'un germe générique.

Preuve du lemme 4.6. Soit Db une composante dicritique de E. Soit dt>

le degré de la restriction de h à D'après ce que nous avons dit ci-dessus,
il est clair qu'un germe générique possède exactement Jfdb branches, la
somme portant sur l'ensemble des composantes dicritiques de E.

Maintenant, par hypothèse sur w", la transformée stricte de h~l(w")
ne rencontre E qu'aux composantes dicritiques. Pour estimer le nombre de

branches de h~l(w") plaçons-nous en un point de contact x G Db de la
transformée stricte de h~l(w") avec Db. Soit deg(Â|^;jç) le degré local en
v de la restriction h\Db. Ce degré est égal au nombre d'intersection en x
de Db avec h~l(w"). Or, ce nombre d'intersection est inférieur ou égal au
nombre de branches en x de h~l(w"). Comme db est égal à Jfdßg(h\Db;x)

X

(la somme portant sur tous les points de contact x de h~x{w") avec Db) le
lemme est démontré.
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Remarques sur la preuve du lemme 4.6.

1. Supposons que D^ et D^ sont deux composantes dicritiques distinctes

et que Dh H Dy {Q}. Supposons que w" — h(Q). Alors le nombre
de branches de h~l(w") est strictement inférieur au nombre générique de

branches. En effet, dans la formule d'Hurwitz les branches de h~~l(w") en Q

interviennent à la fois pour Dt, et pour D&.

2. Il y a égalité entre le nombre de branches de h~l(w") et le nombre

générique de branches si et seulement si :

i) w" n'est pas égal à h(Q) pour un point Q qui est intersection de deux

dicritiques.

ii) en chaque point de contact de la transformée stricte de h~l(w") avec un

dicritique, cette transformée stricte est composée de branches lisses, toutes

transverses au dicritique.

Dans tous les cas où il y a inégalité stricte, la démonstration du théorème

est achevée car, banalement, deux germes topologiquement équivalents ont le

même nombre de branches.

Reste donc finalement le cas où il y a égalité entre les nombres de branches.

Alors un calcul direct basé sur la méthode de C. Clemens et N. A'Campo
(voir [A'C]) montre que le nombre p de Milnor de h~l(w") est strictement

supérieur au p générique. Plus précisément, on a le résultat suivant.

LEMME 4.7. Soit w" une valeur spéciale satisfaisant les conditions de

la remarque 2 ci-dessus. Alors la différence entre le p de Milnor p" de

h~l(w") et le p générique /igen est donnée par p!' — pgQn t= Efe + Px i)
la somme portant sur tous les points de contact x de la transformée stricte
de h~l(w") avec les dicritiques. Le nombre cx est le nombre de branches en

x et px est le p de Milnor du germe de courbe en x.

Remarque sur la preuve du théorème 4.1. On pourrait objecter à

la démonstration que nous venons de donner qu'elle traite un peu légèrement
le cas des germes du pinceau qui ne sont pas réduits. Supposons donc que

w G P1 est tel que le germe h(z) w n'est pas réduit. Il est facile de voir

que w est une valeur spéciale. On affirme que w ^ Q. Il y a pour cela

tout d'abord une raison idéologique. En effet, la topologie d'un germe non
nécessairement réduit est représentée par un entrelacs dont chaque composante
est affectée d'un poids entier > 0 qui représente la multiplicité d'un point
générique de la branche correspondant à la composante considérée. Comme un

germe générique est réduit, l'entrelacs avec poids correspondant à h(z) w
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ne peut pas être isomorphe à l'entrelacs d'un germe générique. Mais en fait

l'entrelacs réduit d'un germe non réduit ne peut pas non plus être isomorphe

à l'entrelacs d'un germe générique. En effet, s'il existe une composante Da

de E telle que la restriction de h à Da est constante, la démonstration donnée

s'applique sans changement. Sinon, comme au moins une branche du germe

h(z) — w est non réduite, la preuve du lemme 4.6 montre que ce germe a un

nombre de branches strictement inférieur au nombre de branches d'un germe

générique.

Remarque sur le théorème 4.5. On a vu que P est l'éclatement de

l'idéal (h\, h2) engendré par h\ et h2. On sait alors que la composition Pon de

P avec la normalisation n: E —» £ est aussi l'éclatement d'un idéal qui n'est

autre que la clôture intégrale 7 de l'idéal (h\.h2) dans l'anneau analytique
local régulier de dimension deux Ou,0- Au sens de Zariski-Samuel (voir
l'appendice 5 de [Z-S]) l'idéal 7 est un idéal complet. Par définition (voir [Sp])
les singularités de E sont des singularités sandwich. Notre construction donne
à partir de la résolution de h\h2 la résolution minimale de ces singularités
sandwich. Inversément, si 7 C Ou.0 est un idéal complet et si h\ et h2 sont
des éléments superficiels de 7 (voir [Z-S] vol. 2, p. 285) tels que la multiplicité
de l'idéal (h\.h2) est égale à celle de 7, un théorème de Rees montre que 7

est la clôture intégrale de (h\, h2). De ceci résulte que toutes les singularités
sandwich sont obtenues après normalisation d'un système linéaire de germes
de courbes planes.

§5. Bonnes composantes dicritiques

Comme indiqué dans l'introduction, notre point de vue sur la C°-suffisance
est le suivant. Le germe / étant donné, nous cherchons une condition sur la
multiplicité de g pour que les germes f-Xg 0 aient tous la même topologie,
quel que soit A G C. Considérant le pinceau gf - Xg 0 nous cherchons
donc à savoir quand son ouvert d'équisingularité £2 contient C P1 \ {oo}.

Remarque. Il découle facilement de la description des valeurs spéciales
donnée au paragraphe 4 que l'ouvert d'équisingularité d'un pinceau est égal
à P1 tout entier si et seulement si:

1. le pinceau est résolu en un seul éclatement;

2. le degré de h\j) > P1 est égal à 1, où D est le dicritique créé par
l'éclatement.
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Ces deux conditions reviennent à dire que l'on a affaire à un pinceau de

courbes lisses à tangentes distinctes.

En dehors de ce cas banal, tous les pinceaux ont un ouvert d'équisingularité
strictement contenu dans P1. Nous nous intéressons donc au cas où l'ouvert £1

est «le plus gros possible», c'est-à-dire consiste en P1 privé d'un point (qui
est en l'occurrence le point oo G P1). On pourrait nommer de tels pinceaux
« presque équisinguliers ».

Pour reconnaître ces pinceaux, revenons au germe de fonction méromorphe
h : U > P1 défini au début du paragraphe 2. Voici une façon un peu
différente de définir les valeurs spéciales (voir le début du paragraphe 3).
Considérons la résolution minimale de h et soit D% une de ses composantes
dicritiques. Associons à Db le sous-ensemble fini St C P1 formé :

1. des valeurs critiques de la restriction h\Db ;

2. des valeurs h(Q) pour chaque point d'intersection Q de Dy avec une

autre composante du lieu exceptionnel.

On démontre facilement l'affirmation suivante.

AFFIRMATION. L'ensemble des valeurs spéciales de h est égal à la réunion

(JS/y où b parcourt l'ensemble des composantes dicritiques {Dt} de la
b

résolution minimale de la fonction h.

DÉFINITION. Nous dirons que la composante dicritique Dt est bonne si

Sb {oo}.

Remarque. Nous choisissons l'adjectif « bon » par commodité de langage,
mais aussi parce que les composantes bonnes sont étroitement liées aux

polynômes bons à l'infini («good») de W. Neumann et L. Rudolph. Voir

[Neu] et [L-W].

La démonstration du lemme suivant découle facilement du théorème 4.1.

LEMME 5.1. La composante dicritique D% est bonne si et seulement si:

1. le degré de h\Db -a P1 vaut 1 ;

2. la composante D^ ne rencontre qu'une seule autre composante D du

lieu exceptionnel et l'on a h(Q) oo où Q Djy D D.
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Dans le paragraphe 7, nous déterminons le degré de C°-suffisance d'un

germe / en cherchant à quelle condition sur la multiplicité de g les

composantes dicritiques de h ^ sont toutes bonnes.

§6. Étude d'un cas particulier

Considérons le germe de fonction méromorphe donné par k(x,y) ^ où

u et v sont deux entiers supérieurs ou égaux à 1. La résolution minimale
de k(x,y) est donnée par la processus suivant. On écrit u ru' et v rv'
avec pgcd(u\vr) 1. On construit l'approximation lente de Pour plus
de détails sur ce procédé, voir [L-M-W2] début de l'appendice. Le point de

départ est fourni par le développement en fraction continue de ^ donné par :

u /v' — h° H

»+
1

où l'on a 0 < h°, 1 < h1 pour 1 < i < s — 1, 2 < hs. Posons m h1.

i=0

Lemme 6.1.

1. Il y a exactement une composante dicritique et c'est la composante
obtenue après m éclatements. Elle correspond précisément au nombre
rationnel ^7 de l'approximation lente.

2. La transformée stricte de y11 0 est une curvette de la composante
qui correspond au sommet le plus à gauche. La transformée stricte de xv 0

est une curvette du sommet le plus à droite.

3. Le degré de la restriction de k à la composante dicritique est égal à
r pgcd(u,v).

4. Les sommets qui sont à gauche de la composante dicritique ont
valuation < 0 tandis que ceux qui sont à droite ont valuation > 0.

Conséquence du lemme 6.1 (importante pour la suite). La composante
dicritique est bonne si et seulement si u 1. En effet u 1 est équivalent à :

1. r 1, i.e. le degré de la restriction de k au dicritique est égal à 1.

2. Les composantes du lieu exceptionnel qui rencontrent le dicritique ont
valuation < 0 (en fait il n'y a qu'une composante du lieu exceptionnel qui
rencontre le dicritique).
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Preuve du lemme 6.1. On observe qu'il ne s'agit de rien d'autre que de

construire la résolution de xv — y11 0. Concrètement, en utilisant les calculs
du début de l'appendice de [L-M-W2] on vérifie qu'en un sommet | de

l'approximation lente, la valuation de k sur la composante qui correspond à

ce sommet vaut av — bu. Elle s'annule donc uniquement au sommet |
Les sommets qui sont à droite de ^ satisfont l'inégalité ^ < | tandis que

ceux qui sont à gauche satisfont f < •

Utilisation du lemme 6.1. Revenons au paragraphe 2 et à la méthode

proposée pour éliminer les indéterminations de h |j-. Dans la résolution
minimale de h\h2 0 les éventuels points d'indétermination se trouvent au

point d'intersection du diviseur Z des zéros avec le diviseur P des pôles.

Localement, la situation est exactement celle du lemme. On obtient donc

une résolution de h en insérant à la place du point d'indétermination le lieu

exceptionnel donné par le lemme 6.1. Le point 2 du lemme dit exactement

comment se fait le recollement. L'entier —u est le coefficient dans P de la

composante de P qui passe par le point d'indétermination tandis que v est le

coefficient de la composante de Z qui passe par le point d'indétermination.
Ceci complète ce que nous avons dit à la fin du paragraphe 3. Connaissant

la topologie colorée de h\h2 0 (par exemple via sa résolution minimale)
on peut déterminer effectivement la topologie colorée de h\h2hg&n 0. En

effet, la valuation de h le long de chaque composante du lieu exceptionnel
se calcule par les moyens habituels. Elle peut, par exemple, se ramener à un
calcul de coefficients d'enlacement. Ensuite, chaque point d'indétermination
est remplacé par le segment décrit par le lemme 6.1. Einalement, on obtient

une résolution de h\h2hg&n 0 en ajoutant, en plus des flèches colorées

de hiJi2 0 des flèches d'une troisième couleur à chaque dicritique D^ en

nombre égal au degré de l'application h\Db P1.

§7. Le calcul du degré de C°-suffisance

Soit 7r: X —» U la résolution minimale de /. Soit D une composante
irréductible de 7r—1 (0) et soit 7 une curvette de D. Rappelons qu'il s'agit
d'un germe de courbe lisse, transverse à D en un point de D qui est lisse dans

la transformée totale de / 0 par 7r. Par définition, le quotient d'Hironaka

qD de D est le nombre rationnel qD — /(/, 7*)//(/, 7*) ; dans cette formule /

représente une droite transverse à / 0 et 7* est l'image de 7 par 7r (voir
le paragraphe 1).
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La formule classique pour le calcul du nombre d'intersection implique

immédiatement que l'on a /(/, 7*) valo(f °tt) et /(/, 7*) val^(/o7r). Par

conséquent, on a aussi qo valD(f 0 7r)/valD(/ on).
Soit maintenant N un entier > 0. La composante D appartient au diviseur

des pôles de la fonction méromorphe hon, où h— f(x,y)/l(x,y)N+l si et

seulement si valz)(/ o n)/va\D(lN+l o n) < 1. Autrement dit, si et seulement

si qj) < N + 1.

Lemme 7.1. Supposons qu'on a qD < N + 1 pour toutes les composantes
de rupture de 7T-1(0). A/c>rs on a qD < A + 1 powr fowto les composantes
de 7T_

1

(0). De plus, l'égalité ne peut avoir (éventuellement) lieu qu'en une

composante D° de tt-1(0) gm ne rencontre qu'une seule autre composante
de 7T_

1

(0) on passe exactement une composante de la transformée stricte
de f par 71r, (Nous dirons que D° satisfait la condition C.)

Pour démontrer le lemme 7.1 nous aurons besoin d'un théorème de

croissance. Pour énoncer ce dernier, il est plus confortable d'avoir recours
à l'arbre dual R de la résolution n. Nous renvoyons au §3 de [L-M-W2]
pour le vocabulaire qui s'y rattache. Remarquons aussi que la composante de

7T_
1

(0) obtenue par éclatement de l'origine de C2 (c'est-à-dire celle qui porte
le numéro 1) est la composante où s'attache la transformée stricte de l par
7T. Le théorème de croissance s'énonce alors ainsi.

THÉORÈME 7.2. Soit a une arête de R, d'extrémités D et D'. Supposons

que D est plus proche de la composante numéro 1 que D'. Alors on a

Çd f qD' • De plus, l'inégalité est stricte si et seulement si en parcourant
l'arête a en allant de D vers D', on se rapproche d'au moins une composante
de la transformée stricte de f 0 (autrement dit, si l'on se rapproche d'au
moins une flèche).

Pour une preuve du théorème 7.2 voir le théorème 3.2 et son corollaire
3.3 de [L-M-W2].

Preuve du lemme 7.1. On remarque pour commencer qu'une composante
de 7T_

1

(0) où passe au moins une composante de la transformée stricte de

f 0 n'est pas une composante de rupture si et seulement si elle satisfait la
condition C.

S'il n'existe pas de telle composante, le maximum des qD où D parcourt
l'ensemble des composantes de 7r_1(0) est égal au maximum des qD où D
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parcourt seulement l'ensemble des sommets de rupture, à cause du théorème
de croissance. Le lemme 7.1 est donc démontré dans ce cas.

Préoccupons-nous donc des composantes satisfaisant la condition C.

L'archétype d'une telle situation est fourni par les singularités d'équation
y(yq — xp) 0 avec p > q (et pgcd(p,q) 1 si l'on veut). Il est amusant de

constater que T. C. Kuo dans [Kuol] p. 226 a également dû traiter avec un soin

particulier ces mêmes singularités. En un sens, ce sont celles pour lesquelles la
valeur donnée pour le degré de C°-suffisance est la plus «limite». La résolution
minimale d'une telle singularité est donnée par le processus d'approximation
lente donné plus haut. Il y a deux composantes de 7r-1(0) où passe (au moins)
une composante de la transformée stricte. L'une D' correspond au nombre

rationnel p/q. L'autre D" correspond au nombre rationnel (en fait entier)
h° + 1, où h° est la partie entière de p/q. C'est cette dernière composante
qui satisfait la condition C.

On a q£>> p +1 et qo" p + h° + 1. On voit qu'en prenant N p + [|]
l'égalité est atteinte en D", puisque h° [|].

Le cas général se démontre de façon analogue, en utilisant les formules
données dans [L-M-W2]. L'égalité n'est pas nécessairement atteinte.

THÉORÈME 7.3. Supposons f à singularité isolée à l'origine de C2.

Alors Suff(f) est égal au maximum des [qp] où D parcourt l'ensemble des

composantes de rupture de 7r_1(0) (it est la résolution minimale de f — 0).

Preuve du théorème 7.3. Posons N max {[#£>]} où D parcourt

l'ensemble des composantes de rupture de 7r_1(0). Dans un premier temps,

il s'agit de montrer que / — Xg 0 a la même topologie que /, pour tout
À G C et tout g G m^+1. La preuve est divisée en un certain nombre de cas.

1er cas: g(x,y) lM(x,y) où l(x.y) 0 est l'équation d'une droite

transverse à /(jc, y) 0 et où M > N + 1.

Ceci est le cas exemplaire, qui rend particulièrement visible pourquoi le

degré de C°-sufhsance a la valeur annoncée. Voir aussi la remarque à la fin
de la preuve du théorème 7.3.

Les calculs que nous venons de faire montrent que toutes les composantes
de 7T-1(0) sont dans les pôles de h on où h (/ : lM) sauf éventuellement

pour certaines composantes satisfaisant la condition C (situation que nous

traiterons un peu plus loin).
En chaque point de contact de la transformée stricte de /, nous avons un

point d'indétermination de la fonction méromorphe ho tt lorsque l'inégalité
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est stricte. En ce point, nous appliquons le lemme 6.1 à hon en observant que

u 1 car la singularité est isolée. C'est ici que cette hypothèse intervient

Selon la remarque qui suit la preuve du lemme 6.1 toutes les composantes

dicritiques obtenues sont bonnes.

Supposons maintenant que l'on a une composante D° satisfaisant la

condition C, que qDo N+l et que M X+l. Dans ce cas, cette composante

est dicritique pour hon. Mais elle est bonne car la seule composante de n *(())

qu'elle rencontre est dans les pôles (théorème de croissance et le degré de

la restriction de h o n à D° vaut 1, puisque D° ne rencontre qu'une seule

composante de la transformée stricte de / 0.

2e cas: g(x,y) G mM avec M > X + 1 et la transformée stricte de g par
7r ne s'attache en aucun point de contact de la transformée stricte de / 0.

La démonstration est la même que dans le 1er cas. En effet, le calcul

classique des multiplicités du diviseur (gon) montre qu'en chaque composante
D de 7T_

1 (0) on a valdQN+1 ° tt) < valD(g ° tt).

3e cas: g(x.y) G mM avec M > N + 1, mais la transformée stricte de

g 0 par n s'attache en (au moins) un point de contact de la transformée
stricte de / 0.

Soit Q un tel point. Il y a deux sous-cas 3a et 3b.

Cas 3a : La transformée stricte de g en Q ne contient pas ensemblistement
la transformée stricte de / 0. (Rappelons que n est la résolution minimale
de / et donc la transformée stricte de / 0 en Q est lisse et transverse au

lieu exceptionnel.)
Éclatons le point Q. Nous obtenons une nouvelle composante D' et une

nouvelle projection n' (qui remplace n). On a: on') valD(/o7r) + 1

et valD'(goftr) v'd\D(gon)+m avec m > 0. En un nombre fini d'éclatements
on sépare g de / et l'on se retrouve dans la situation du 2e cas. Le fait que
n1 n'est pas minimale ne gêne pas.

Cas 3b : La transformée stricte de g 0 en Q contient celle de / 0.
Autrement dit, on a une composante fixe.

Un calcul analogue au précédent montre que l'on peut commencer par faire
des éclatements pour se ramener au cas où la transformée stricte de g 0
est égale à celle de / 0. En présence d'une composante fixe, il ne sert à
rien de faire des éclatements. Choisissons plutôt des coordonnées locales en
Q telles que Y 0 soit l'équation du lieu exceptionnel et que X 0 soit
l'équation de la transformée stricte de /. Alors le pinceau local associé à

-on s'écrit gX - AuXmYn 0 où u est une unité en X et Y. Ici m est
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un entier > 0. Le point important est que n > 0 même dans le cas où Q

appartient à une composante D satisfaisant la condition C. La raison est que
valdQN+1 ° tt) < valf)(g o 7r) car g passe par Q tandis que l s'attache en la

composante numéro 1. Ceci découle du calcul usuel des multiplicités pour les

résolutions des singularités de courbes planes. On voit alors que le pinceau
local en Q n'a que oo comme valeur spéciale. Ceci achève la preuve de la

première partie du théorème 7.3.

Dans un deuxième temps, nous allons maintenant montrer que, si M est

un entier > 0 strictement inférieur à max{[qD]} où D parcourt l'ensemble

des composantes de rupture de 7r-1(0), alors le jet ßM\f) n'est pas

topologiquement suffisant.

Manifestement, il suffit de montrer que le pinceau /(jc, y) — À/(x,y)M+1 0

n'est pas équisingulier pour À G C. (Comme précédemment l(x,y) 0 est

l'équation d'une droite transverse à f(x:y) 0.)
Par hypothèse, il existe au moins une composante de rupture D' telle que

M+1 < qD> • Par le théorème de croissance, on peut supposer que D' contient
des points de contact de la transformée stricte de / 0.

Supposons pour commencer que l'inégalité est stricte. Comme / est

transverse à / 0, la résolution minimale de / 0 est aussi celle de

If 0. La transformée stricte V de l est dans le diviseur P des pôles
de (/ : /M+1) tandis que, par hypothèse, la composante D' est dans le

diviseur Z des zéros de h. Notons T la géodésique de l'arbre de la résolution

minimale de / qui relie le sommet numéro 1 à D'. La démonstration de

la proposition 2.1 indique que T contient des composantes dicritiques ou

des points d'indétermination. (Les deux possibilités peuvent coexister.) En

ce qui concerne les points d'indétermination, appliquons le procédé décrit
dans le lemme 6.1. Nous obtenons une nouvelle géodésique V qui relie le

sommet numéro 1 à D'. Soit D" la composante dicritique dans V qui est la

plus proche de D'. Alors, l'ensemble des valeurs spéciales S" associé à D"
contient au moins une valeur distincte de oo. En effet, par construction, D"
rencontre une composante D telle que D" P\D {Q} et h(Q) / oo.

S'il y a égalité M+1 qw alors la composante D' est dicritique. Si

D' rencontre des composantes de 7r-1(0) qui ne sont pas dans les pôles,

on considère la valeur \f prise par h au point d'intersection d'une de ces

composantes avec D'. Par construction \' ^ oo et l'on conclut comme ci-

dessus. Si D' ne rencontre que des composantes qui sont dans les pôles, alors

D' (qui est une composante de rupture) contient au moins 2 points de contact

de la transformée stricte de / 0.
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Par conséquent, le degré h\o' —> P1 est au moins égal à 2. La restriction de

h à D' aura au moins une valeur critique distincte de oo (grâce au théorème

de Hurwitz). Par conséquent SD> contient au moins une valeur distincte de

oo et l'on conclut comme précédemment. Fin de la preuve du théorème 7.3.

Remarques finales.
1. La preuve du théorème 7.3 montre clairement que si / n'est pas à

singularité isolée à l'origine, aucun jet n'est suffisant (pour r fini). En

effet, choisissons un point de contact de la transformée stricte de / 0 avec

7T_
1

(0) où cette transformée stricte n'est pas réduite.

Appliquons le lemme 6.1 pour g l(x,y)N avec N grand et h — ^.
On voit que l'on a m > 1 car / n'est pas réduite. La remarque qui suit

le lemme 6.1 indique que la composante dicritique créée par l'utilisation du

lemme 6.1 n'est pas bonne. Il est facile de déterminer grâce au lemme 6.1

quel est le membre générique du pinceau ainsi créé (il dépend de l'entier N).
Bien sûr, ce membre générique est à singularité isolée. Ceci donne un autre

point de vue sur les résultats de H. Maugendre dans sa thèse. (Voir [Mau].)

2. Soit /(xy) 0 l'équation d'une droite transverse à /(xy) 0. La

preuve du théorème 7.3 montre que le jet /r)(/) est topologiquement suffisant
si et seulement si / — À/r+1 est topologiquement équivalent à / pour tout
À G C Comparer avec B. Teissier dans [Tei2] p. 280.

§8. Un petit historique de la C°-suffisance

Le concept de C°-suffisance apparaît dans l'article de R. Thom au colloque
de Bombay. (Voir [Thom].) Le rôle de l'inégalité de Lojasiewicz y est mis en
évidence.

Au cours des années 1970-80, plusieurs auteurs (voir, entre autres, [Kuo2],
[Bo-Lo], [Ch-Lu]) ont établi que Suff(/) est donné par l'inégalité de

Lojasiewicz de la façon suivante. On considère les exposants 9 > 0 tels
qu'il existe un voisinage U de l'origine et une constante C > 0 tels que l'on
ait: |grad f(z)\ > C\zf pour tout z G U. La borne inférieure des 9 ayant
cette propriété est Vexposant de Lojasiewicz Loja(/). Le résultat obtenu par
plusieurs auteurs est que Suff(/) [Loja(/)] + 1, où [x] désigne la partie
entière de x.

Dans [Kuo-Lu] T.C. Kuo et Y.C. Lu ont donné une façon explicite de
calculer 1 exposant de Lojasiewicz pour les germes de courbes planes, en
utilisant les développements de Puiseux des branches de / 0.
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En 1975, B. Teissier a démontré (pour n quelconque) que Loja(/) est

égal au maximum des invariants polaires ~ selon sa définition des invariants

polaires. Voir [Teil] p. 626. A la même époque, il démontre directement que

Suff(/) max | ^ |. Voir [Tei2] p. 280. Dans [Mer] M. Merle a explicité

une façon de calculer les invariants polaires pour les branches de courbes

planes.

Dans [L-M-Wl] et [L-M-W2] nous avons donné avec F. Michel une

interprétation topologique des invariants polaires des courbes planes et une

façon simple de les calculer à l'aide des quotients d'Hironaka (appelés alors

coefficients d'insertion) de la résolution minimale de /. Dans le présent travail,
nous avons donné une démonstration directe (pour les courbes planes) du fait

que Suff(/) se calcule à partir des quotients d'Hironaka.
D'autres points de vue sur Suff(/) pour les courbes planes sont exprimés

dans [B.Li] et [Cos].

Finalement, au chapitre 7 de son livre [Cas], E. Casas-Alvero détermine

également le degré de C°-suffisance d'un germe de courbe plane par le biais
des pinceaux. Son étude est basée sur la théorie des points infiniment voisins
à la Enriques, développée dans les premiers chapitres de son livre.

Nous terminons ce paragraphe en comparant les valeurs obtenues pour
Suff(/) par quelques auteurs, pour aider le lecteur à s'y retrouver. Les

invariants polaires ^ de B. Teissier sont définis par l'égalité

eq
{ 1

I(TgJ 0)

Mq mult(r^)

où {Tq} désigne l'ensemble des branches d'une polaire de /. (Voir [Tei2]

p.270.)
q

Dans nos deux articles cités avec F. Michel, nous avons démontré que
l'ensemble {I(TqJ 0)/mult(r^)}^ est égal à l'ensemble {qD} où D

parcourt l'ensemble des composantes de rupture de la résolution minimale
de /. Compte tenu de la différence d'une unité entre les ^ et les qo notre
théorème 7.3 est bien numériquement équivalent au théorème de B. Teissier,
à la p. 280 de [Tei2].

On observera que le même décalage d'une unité se retrouve dans la formule

Suff(/) [Loja(/)] + 1 citée au début de ce paragraphe. Compte tenu du

cor. 2 p. 270 de [Tei2] qui affirme que Loja(/) max { j (voir aussi

[Teil] p. 626) tous les énoncés sont bien numériquement équivalents.
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