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EQUISINGULARITE DANS LES PINCEAUX
DE GERMES DE COURBES PLANES
ET C°-SUFFISANCE

par LE Dung Trang et Claude WEBER ')

§1. INTRODUCTION

Soient fy et f; deux germes de fonction holomorphe a I’origine de C*. On
suppose que les deux germes s’annulent a [’origine et sont a singularit€ isolée.
Traditionnellement on dit que fy et f; sont fopologiquement équivalents sl
existe un germe d’homéomorphisme @®: (C?,0) — (C?,0) de degré +1, tel
que 'on ait fyo ® = fi.

On peut démontrer que les deux germes sont topologiquement équivalents
si et seulement si les entrelacs orientés qui leur sont associés dans une petite
sphere de Milnor sont isotopes. Voir [Saeki] et les références qui s’y trouvent.

Dans [E-N] D. Eisenbud et W. Neumann donnent une fagon de coder
Ientrelacs de Milnor associé a un germe f par un diagramme d’épissure
(«splicing diagram»), qui est une version plus élaborée des anciens cablages.

Une autre facon de se donner le type topologique de I’entrelacs de Milnor
consiste a utiliser I’arbre de la résolution minimale de f. Ce faisant, on décrit
la configuration du lieu exceptionnel de la résolution en indiquant comment
les composantes irréductibles se coupent et quelle est la self-intersection de
chaque composante. On indique en plus, par des fleches en quantité adéquate,
combien de fois chaque composante est coupée par la transformée stricte de
f =0. Pour plus de détails voir [B-K].

Dans tout ceci, le fait que les germes sont a singularité isolée n’est
pas essentiel. Pour décrire la topologie d’un germe a singularité non isolée
il convient d’indiquer pour chaque composante de I’entrelacs (resp. pour

') Les auteurs remercient le Fonds National Suisse de la Recherche Scientifique de son
soutien financier.
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chaque fleche) quelle est la multiplicité d’un point générique de la branche
correspondante dans I’équation f = 0. Ceci conduit aux entrelacs pondérés
(«multilinks » chez Eisenbud-Neumann).

Soient maintenant Ay = 0 et hy; = 0 deux germes de courbes planes
s’annulant a I’origine, sans branche commune. La famille de germes de courbes
planes wyh; —wihy = 0 avec w = (w; : w;) € P! est par définition le pinceau
de germes de courbes planes engendré par h; et h,. Un cas particulier d’un
théoreme général sur les déformations (dG a O. Zariski) affirme qu’il existe
un ouvert de Zariski non vide Q C P! tel que les éléments correspondants du
pinceau ont tous la méme topologie. L’ouvert maximal ayant cette propriété
s’appelle 'ouvert d’équisingularité du pinceau, tandis que son complémentaire
est ’ensemble (fini) des valeurs spéciales.

Dans la premiere partie de ce travail, nous énoncons et démontrons un
théoreme (théoreme 4.1) qui caractérise explicitement 1’ensemble des valeurs
spéciales en fonction de la résolution minimale du pinceau. Nous décrivons
la résolution minimale au paragraphe 2 et parlons des valeurs génériques au
paragraphe 3. La preuve du théoreme (en fait sa partie la plus facile) permet
de déterminer explicitement la topologie d’'un membre générique du pinceau
en fonction de la topologie (colorée) de I’entrelacs associé a hjh, = 0. Voir
la remarque a la fin du §3.

La deuxieme partie de ce travail (basée sur la premicre) est consacrée au
degré de C-suffisance d’un germe de courbe plane. Voici de quoi il s’agit.
Soit f € C{X,Y} avec f(0) = 0. Le jet d’ordre r de f, noté j(f), est
dit topologiquement suffisant si, quel que soit g € m'"!, le germe f est
topologiquement équivalent au germe f 4 g. Bien s(r, il existe une définition
analogue pour les germes & n variables. Le degré de CO-suffisance Suff(f) de
f est le minimum des r tels que le jet j)(f) est topologiquement suffisant.

Soit maintenant 7: ¥ — C? la résolution minimale de f. Soit E = 7—'(0)
le lieu exceptionnel de la résolution. Choisissons une composante irréductible
D de E. Une curvette de D en un point P € D lisse dans la transformée
totale de f = 0 est un germe -y en P de courbe lisse et transverse a D. Ce
germe est la transformée stricte d’une branche (c’est-a-dire d’une composante
analytiquement irréductible) v, en 1’origine de C2.

Par définition, le quotient d’Hironaka qp de D est le nombre rationnel
positif égal a I(f = 0,7.)/I(A,7v.) ou A est une droite transverse & f =0 et a
v . Ici I(—,—) désigne le nombre d’intersection de deux germes a I’origine.
Il est facile de voir que ce nombre ne dépend que de la composante D.
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DEFINITION. Une composante D de E est appelée une composante de
rupture si elle rencontre au moins trois composantes de la transformee totale
de f =0 par 7.

Le calcul du degré de CU-suffisance est établi par le théoréme suivant.

THEOREME 7.3. Supposons que f est a singularité isolée a l’origine de
C2. Alors Suff(f) est égal au maximum des parties entieres [gp| ou D
parcourt ’ensemble des composantes de rupture de E.

REMARQUE. Le théoreme 3.2 de [L-M-W2] (que nous appellerons
théoréme de croissance) implique qu’il suffit pour calculer Suff(f) de consi-
dérer les composantes de rupture D qui contiennent au moins un point de
contact de la transformée stricte de f = 0. Le nombre de composantes D
a considérer est donc inférieur ou égal au nombre de branches de f. En
particulier, il n’y a qu’un seul quotient d’Hironaka a calculer si f est analy-
tiquement irréductible.

Notre approche est basée sur I'idée suivante (tellement simple qu’elle
peut sembler trop naive). Nous cherchons des conditions sur la multiplicité
de g pour que les germes f — Ag = 0 du pinceau nf — Ag = 0 aient la
méme topologie, quel que soit A € C. Pour cela, nous utilisons a fond la
détermination de 1’ouvert d’équisingularité faite dans la premiere partie de ce
travail.

§2. ELIMINATION DE L’INDETERMINATION LOCALE
D’UNE FONCTION MEROMORPHE A DEUX VARIABLES

Soit U un domaine (=ouvert connexe) de C* contenant 1’origine. Soient
hy et hy: U — C deux fonctions holomorphes, avec #;(0) = 0 pour i = 1,2.
On suppose que I’origine est le seul zéro commun a h; et h, dans U.

Ceci étant posé, on considere la fonction /h = % . La fonction méromorphe h
est definie en tout point z € U différent de 1’origine et peut étre interprétée
comme une application h: U~—— P! définie par h(z) = (hl(z) : hz(z)).

Pour chaque w € P!, I’équation wyh; — wihy, = 0 définit un germe de
courbe plane que I’on désignera par i(z) = w ou par A~ '(w). L’ensemble des
germes h(z) = w pour w € P! est le pinceau (local) de germes de courbes
planes associé a la fonction méromorphe h.
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Une modification de U (au-dessus de 1’origine) est pour nous une
composition de morphismes d’éclatements de points dont les centres se
projettent sur 1’origine. Une modification p: U— U telle que hop est un
morphisme (c’est-a-dire est définie partout) est, par définition, une résolution de
h. On dit aussi que p leve I’indétermination de /. En termes de pinceaux, dire
que p est une résolution signifie que les courbes (hop)~'(w) et (hop)~(w")
sont disjointes si w est distinct de w’. Autrement dit, on a «résolu» la famille
de germes {A(z) = w} dans ’ancien sens du verbe «résoudre» qui veut dire
«diviser en ses parties constituantes ».

Nous allons montrer que, pour toute fonction méromorphe telle que #,
il existe des résolutions. Parmi celles-ci, il y en a une qui est minimale et
que nous décrirons. Un tel énoncé est connu depuis des décennies. Nous en
proposons une démonstration qui a 1’avantage d’étre géométriquement tres
explicite. La démonstration elle-méme joue un réle clef dans la suite de ce
travail.

Pour l’instant, considérons une modification quelconque p: U — U.
Lensemble p~!'(0) est appelé le lieu exceptionnel de la modification. Soit
D une composante irréductible du lieu exceptionnel. Pour i = 1,2 on
définit v;(D) comme étant la multiplicité de h; o p le long de D. Posons
v(D) = vi(D) — va(D). St v(D) est strictement positif, D appartient au
support du diviseur Z des zéros de ho p. Si v(D) est strictement négatif,
D appartient au diviseur P des poles de h o p. Autrement dit, on a
(hop)=(hyop)—(hyop)=Z+P. Une composante D du lieu exceptionnel
de p est dite dicritique si la restriction h o p|p est non constante. Une
condition nécessaire, mais non suffisante, pour que D soit dicritique est que
v(D) soit égal a zéro. Si v(D) = 0 sans que D soit dicritique, la restriction
de la fonction hop a D est constante, de valeur différente de O et de
I'infim1 co.

PROPOSITION 2.1. Il existe une résolution de h.

Preuve de la proposition 2.1. Considérons la fonction holomorphe
hihy: U — C. Soit p: U — U une modification de U qui résout la singularité
de hjhy a Torigine. Voir par exemple [B-K] §8.4. Soit ((hihy) o p)~'(0) la
transformée totale et soit S son support. Les points d’indétermination de Ao p
sont situés au point d’intersection O de deux composantes S; et S, de S
pour lesquelles on a v(S7) > 0 et v(S,) < 0. Définissons alors la complexité
du point Q comme étant ¢(Q) = |v(S1) + v(S2)]|. Eclatons le point Q. Soit




EQUISINGULARITE ET C°-SUFFISANCE 359

S; le lieu exceptionnel de ce nouvel éclatement et soit o' la projection de
I’éclatement de O suivie de p. Soit v(S3) la multiplicité de la fonction hop'
le long de S3. On a v(S3) = v(S;) + v(S2). Soit Q; le point d’intersection de
(la transformée stricte de) S; avec S3 pour i = 1,2.

Si v(S;) = 0, aucun des deux points Q; n’est d’indétermination (et en
fait S; est une composante dicritique). Si v(S3) > 0 alors @, est un point
d’indétermination; tandis que si v(S3) < 0 c’est Q) qui est d’indétermination.
Mais, de toute facon, la complexité du nouveau point d’indétermination est
strictement inférieure a c(Q).

En un nombre fini d’éclatements on résout donc la singularit¢é en Q.
Comme il n’y a qu'un nombre fini de points d’indétermination tels que Q,
ceci acheve la preuve de la proposition 2.1.

Soit p: U — U une résolution de A et soit A I’ensemble de ses
composantes dicritiques.

DEFINITION. Une résolution de 4 est dite minimale si les composantes
du lieu exceptionnel qui n’appartiennent pas a A sont de self-intersection
différente de —1.

Supposons que la résolution p: U— U de h nest pas minimale. Soit
D une composante du lieu exceptionnel dont la self-intersection vaut —1.
Par définition, la restriction de ho p a D est constante. Par conséquent,
la modification p’': U’ — U obtenue a partir de p en contractant D est
encore une résolution de /. En revanche, on n’aurait plus une résolution
de h si ’on contractait une composante dicritique de self-intersection —1.
En effet, le point image du dicritique dans le contracté est un point
d’indétermination puisque la restriction de la fonction au dicritique est non-
constante.

PROPOSITION 2.2. [l existe une résolution minimale et cette résolution est
unique a isomorphisme pres.

Preuve de la proposition 2.2. L'existence résulte immédiatement de ce
que nous venons de faire. En effet, il suffit de prendre la résolution fournie
par la preuve de la proposition précédente et de contracter, tant qu’il en
reste, les composantes non dicritiques de self-intersection —1. (La résolution
construite dans la preuve de la proposition précédente n’est pas nécessairement
minimale.)

| —_—
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D’unicité résulte d’arguments bien connus de la théorie des surfaces
complexes. Une bonne référence est fournie par le livre de H. Laufer; voir
[La] a partir de la page 87. Le fait que I'auteur s’intéresse a la résolution
des singularités normales de surfaces plutdt qu’a la résolution des fonctions
méromorphes n’est pas essentiel.  []

REMARQUE. Le théoreme d’unicité permet de donner un sens a la
phrase suivante: «Deux résolutions de 4 ont les “mémes” composantes
dicritiques». En effet, on passe d’une résolution a une autre par une
suite finie d’éclatements et de contractions sans toucher aux composantes
dicritiques.

§3. VALEURS SPECIALES D’UN PINCEAU DE GERMES
DE COURBES PLANES

Soit p: U — U la résolution minimale de la fonction méromorphe /.
Posons 4 =hop.

DEFINITION. L’ensemble (fini) des valeurs spéciales de h est formé:

i) des valeurs h|p, ol D, parcourt I’ensemble des composantes non
dicritiques de E = p~'(0). Remarquer que la restriction de 4 & D,
est constante par définition.

ii) des valeurs critiques de %|p, ott Dj, parcourt ’ensemble des composantes
dicritiques de E.

1i1) des valeurs R(Q) ol O est un point d’intersection entre deux
dicritiques.

Par définition une valeur non spéciale est générigue. Si w est une valeur
générique, le germe de courbe h~1(w) est, par définition, un membre générique
du pinceau. Sinon, c’est un membre spécial.

AFFIRMATION 1. N’importe quelle résolution de h est une résolution du
germe de courbe h™'(w) pour w générique.

En fait on a mieux:
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AFFIRMATION 2. N’importe quelle résolution de h est une résolution de

m . Lo
n’importe quel germe | h=Y(w") ou les w' sont m valeurs génériques deux
p=1
a deux distinctes.

Preuve des deux affirmations. Si w est une valeur générique, par définition
(h)~'(w) ne rencontre aucune composante D, non dicritique. Soit alors Dy
une composante dicritique et soit z € D, un point d’intersection de (h)~'(w)
avec D,. En vertu de la condition iii) portant sur les valeurs spéciales, le
point z est un point lisse de D, dans E. Comme la restriction E|D,, n’a
pas de point critique en z, la courbe (h)~'(w)) est lisse et transverse a Dy
en z.

Le méme argument démontre aussi 1’affirmation 2, car si w est distinct
de w’ les points de contact de (h)~Y(w) avec D, sont nécessairement
distincts de ceux de (h)~'(w’) avec D, puisque i n’a plus de point
d’indétermination.

L’ affirmation suivante se démontre en suivant un raisonnement semblable.

AFFIRMATION 3. La résolution minimale de h est la résolution minimale
d’'un germe h~'(w) Uh W) o w et w sont deux valeurs génériques
distinctes.

REMARQUE. Nous venons de voir que la résolution minimale de /4 est
(entre autres choses) une résolution de n’importe quel germe générique. En
revanche, elle n’est pas nécessairement une résolution d’un germe spécial.
Maintenant, supposons que /iy et hy sont des germes génériques du pinceau.
Alors la résolution construite dans la preuve de la proposition 2.1 est la
résolution minimale de / si I'on démarre avec la résolution minimale de
hihy. Si le germe h; (et/ou le germe hy) est spécial, la résolution de la
proposition 2.1 n’est pas nécessairement minimale. A posteriori, on constate

qu’elle I'est si et seulement si h; (et/ou hy) sont résolus par la résolution
minimale de h).

Soit maintenant p: U — U la résolution minimale de % construite au
paragraphe 2.



362 LE D.T. ET C. WEBER

PROPOSITION 3.1. Les composantes dicritiques de E = p~1(0) sont les
composantes D telles que:

1. w(D)=0.

2. D rencontre au moins une composante D' de support de Z et une
composante D" du support de P.

Preuve. Les conditions sont nécessaires. En effet, si D est dicritique, D ne
peut appartenir ni au support des zéros ni au support des poles, ce qui implique
que v(D) = 0. Comme la restriction de /4 2 une composante dicritique D est
nécessairement surjective (puisque non constante et holomorphe) la valeur 0
et la valeur oo sont prises par A|p.

Réciproquement, nous savons déja que v(D) = 0 implique soit que D est
dicritique, soit que la restriction A|p est constante et de valeur distincte de 0 ou
de oo. La condition 2 rend impossible la deuxieme branche de 1’alternative. [

REMARQUES.

1) La preuve indique que la composante D est dicritique si et seulement
si v(D) =0 et D rencontre le support de Z ou le support de P.

2) La proposition précédente a un certain intérét pratique. Il est facile en
effet de construire des fonctions méromorphes ol toutes les composantes du
lieu exceptionnel de la résolution minimale ont valuation v nulle.

La remarque suivante est une parenthese dans cet article. Elle résulte
immédiatement du paragraphe 2 et de la proposition précédente.

REMARQUE. Soient h; et hy: U — C comme au §2. Tautologiquement,
hi et h, déterminent le pinceau qu’elles engendrent ! Mais ce que nous venons
de faire démontre ceci. La topologie locale de hjh; = 0 (ou I’on colore les
composantes de i, = 0 d’une certaine couleur et celles de h; = 0 d’une
autre couleur; nous parlerons dans ces circonstances de topologie colorée)
détermine la topologie colorée de hihyhg, = 0. Par hg, on désigne un
membre générique du pinceau (équipé d’une troisieme couleur). De plus le
procédé que nous avons donné est effectif. Entre autres choses, la topologie
de hgn peut étre déterminée effectivement a partir de la topologie colorée
de hih, = 0. De méme, la topologie colorée de h]hzhéen...hggn = 0 est
déterminée, ou les higen sont m membres génériques, deux a deux distincts,
du pinceau. Finalement, observons que tout ceci fonctionne si les générateurs
h; (i =1,2) du pinceau ne sont pas réduits.

Nous conseillons au lecteur de faire des tests sur quelques exemples. Voir
aussi le paragraphe 6 (surtout la fin).
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$4. L OUVERT D’EQUISINGULARITE D’UN PINCEAU LOCAL

Dans ce paragraphe, nous donnons une preuve détaillée du théoreme
suivant, qui caractérise 1’ouvert d’équisingularité d’un pinceau local.

THEOREME 4.1. Soient h; et hy comme au début du paragraphe 2. Soient
w et w' deux points de P'. Alors:

1. Les germes h™'(w) et h=Y(w') ont méme topologie si w et w' sont
génériques.

2. Les germes h=Y(w) et h=Y(w"”) n’ont pas la méme topologie si w
est générigque et si w' est spécial.

Commencons par énoncer une proposition qui est un cas particulier d’un
phénomene bien plus général.

PROPOSITION 4.2. Soient h; et hy, comme au début du paragraphe 2.
Alors il existe un ouvert non-vide Q C P! ayant les propriétés suivantes :

1. Siwetw €Q les germes h='(w) et h='(w') ont la méme topologie.

2. SiweQ etsiw' ¢Q les germes h™'(w) et h='(w") n’ont pas la
méme topologie.

DEFINITION. L’ouvert Q est appelé 'ouvert d’équisingularité du pinceau.

COMMENTAIRE. Le théoreme 4.1 affirme que l'ouvert d’équisingularité
coincide avec I’ouvert des valeurs génériques (ce dernier étant défini comme
le complémentaire de l’ensemble des valeurs spéciales, définies au début
du §3). Un point important est que 1’on a affaire a un ouvert (de Zariski).

Soit p: P! — N U {+oc} la fonction qui associe a chaque w € P! le
nombre de Milnor du germe A~ !(w), en convenant que le nombre de Milnor
d’un germe non réduit vaut +oo.

LEMME 4.3. La fonction [ est semi-continue supérieurement.

Preuve du lemme 4.3.  Rappelons que la semi-continuité supérieure signifie
ceci. Pour tout w € P! il existe un ouvert W contenant w, tel que pour tout
w' € W on ait u(w) > pw').

| .
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Fixons w € P'. Soit S une petite sphére de Milnor pour le germe A~ ! (w).
Rappelons que I’équation de ce germe est f, = wyh; — wihy = 0. Soit
z=(z1,22) € C*. Posons Oi(f,,) = %fTw pour i =1,2.

Le nombre p de Milnor est le nombre d’intersection a I'origine de
O(fw) = 0 avec 0Or(f,) = 0. Maintenant, quitte a restreindre S, on
peut supposer que S est aussi une spheére de Milnor pour le germe
(al(fw)) (ag(fw)) = 0. Par le théoreme de Lefschetz, u est aussi le
coefficient d’enlacement dans S de I'entrelacs orienté (9;(f,,) = 0) NS avec
I’entrelacs (02(fw) = O) nsS.

Si w’ est proche de w, 0;(f,') =0 coupe S transversalement (i = 1,2)
et le coefficient d’enlacement dans S des entrelacs associés est égal a
celui de 0;(f,) = 0 (invariance du coefficient d’enlacement par homotopie).
Toujours par le théoreme de Lefschetz, le coefficient d’enlacement dans S
de (01(fw) = 0) NS avec ((fu) = 0) N S est égal a la somme des
nombres d’intersection de 0;(f,) = 0 avec 0»(f,r) = 0 en leur divers points
d’intersection dans la boule B dont le bord est la sphere §. Comme ces
nombres d’intersection sont strictement positifs, on a bien I’inégalité annoncée
si ’on considere le nombre d’intersection de

I(fw)=0 avec h(fw)=0

en l'origine. [

Preuve de la proposition 4.2.  Soit jmiy la valeur minimum prise par la
fonction : P! — NU {+0oc}. 1l résulte de la semi-continuité que ’ensemble
des w € P! tels que w(w) = fmin est un ouvert (non-vide) que nous
notons €.

Le théoreme p-constant de L€ (pour les germes de courbes planes) dit
que pour tous les w € £, les germes h~!'(w) ont la méme topologie.
Voir [Le].

Finalement, pour w € Q et pour w” ¢ Q, la topologie de A~ !(w) ne
peut &tre celle de A~ !(w”) puisque les nombres p de Milnor sont différents.
Ceci résulte du théoreme de J. Milnor et V. Palamadov qui affirme que la
codimension de 1’idéal jacobien est €gale au premier nombre de Betti de la
fibre de Milnor. Voir [Mil] appendice B et [Pala].  []

Poursuivons nos préparatifs en vue de démontrer le théoreme 4.1. Soient a
nouveau h; et h, comme au début du paragraphe 2. Dans U x P! considérons
la surface X d’équation nh; —Ahy = 0. La restriction a 2 des deux projections
de U x P! sur chacun des facteurs fournit deux morphismes P: £ — U et
¥ — P! tels que le diagramme suivant commute :
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b3

N

P

U _t, P!

Le morphisme P est I’éclatement de ’idéal engendré par h; et hy. Il est
facile de voir que Plp-iy—fo3) — U — {0} est un isomorphisme tandis que
P~1(0) = {0} x P'. Par conséquent, P leéve 'indétermination de & et c’est
la fagon la plus «économique» de le faire. Mais le «hic» est que X est une
surface tres singuliere qui n’est pas normale en général.

Nous allons maintenant comparer P: £ — U avec la résolution minimale
p: U — U construite au paragraphe 2.

Pour cela, considérons le lieu exceptionnel E = p~!(0). Dans E, soit
A la réunion des composantes dicritiques. Considérons ensuite la différence
E — A et son adhérence ad(E — A). Cette dernieére est 1’'union disjointe de
ses composantes connexes Ci,...,Cy. La configuration de chaque C; est
représentée par un sous-graphe connexe (en fait un arbre) de D'arbre de
configuration de E. Apres tout, p: U—U peut €tre considérée comme une
résolution du point lisse 0 € U. Par le théoreme de P. du Val et D. Mumford,
la forme intersection associée a E est négative définie. Voir [H-N-K] p. 86.
Par restriction, la forme intersection associée a chaque C; est aussi négative
définie.

Soit alors X le quotient de U obtenu en identifiant chaque C; en un
point (disons P;). Par le théoréme de H. Grauert, X peut €tre muni d’une
(unique) structure d’espace analytique normal. (Voir [Gr].) Par construction,
la restriction de 4 & chaque C; est constante. On en déduit que A passe au
quotient et fournit un morphisme s: ¥ — P!'. Pour la méme raison, on a un
morphisme n: X — T tel que le diagramme suivant commute :

)

[
h, 1

2 —— P

PROPOSITION 4.4. n:Y — ¥ est la normalisation de X.

Preuve de la proposition 4.4. Par construction, 1’espace analytique X
est normal. Il est facile de vérifier que n est un morphisme fini et

est un isomorphisme en restriction a un ouvert dense de points lisses.
(Voir [Lo].) [
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Observons que dans la courbe C; aucune composante irréductible n’a self-
intersection égale a —1, par minimalité de la résolution p. On en déduit
que chaque point P; € T est un point vraiment singulier et que {P;} pour
i=1,...,k est la liste complete des points singuliers de X. Par conséquent,
la projection g: U — % est la résolution minimale des singularités de X. En
résumé, nous obtenons donc le théoréme suivant.

THEOREME 4.5. Il y a un grand diagramme commutatif:

A

U

q

=

:
J
|

h
——— P!
ou n est la normalisation de X et ou q est la résolution minimale des
singularités de X.

Preuve du théoréme 4.1. Soient donc w et w’ deux valeurs génériques.
Il est clair que A='(w) et h~!'(w') ont la méme topologie. En effet, leurs
transformées strictes par la résolution minimale p de h passent uniquement par
les composantes dicritiques, qu’elles rencontrent de facon lisse et transverse.
De plus, pour une composante dicritique D donnée, le nombre de points
de contact de la transformée stricte de A~ !(w) avec D est égal au nombre
de points de contact de la transformée stricte de h= Y w") avec D. En effet,
ces deux nombres sont égaux au degré de ’application ﬁlD — P! Les deux
germes ont donc la méme résolution et, par conséquent la méme topologie.

Soient maintenant w” une valeur spéciale et w une valeur générique. Par
construction A~ '(w”) et h~'(w) n’ont pas la méme résolution. Mais il se
pourrait tout de méme que leurs arbres de résolution soient isomorphes. Nous
allons montrer (et c’est 1a I’essentiel de la démonstration du théoreme) qu’il
n’en est rien.

1¢" cas. Soit D, une composante irréductible de E = p~1(0) telle que la
restriction de 4 a D, soit constante. Soit w, € P! la valeur A(D,). Raisonnons
par I’absurde en supposant que w, € £2.

-
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Tout d’abord, nous avons observé précédemment que € est un ouvert de
P!. Par construction tous les germes 2~ !(w) pour w € Q ont méme topologie.
La théorie de O. Zariski pour I’équisingularité des germes de courbes planes
assure qu’il existe un homéomorphisme ¥': (4’ Q) — QxT ou I estle
germe de h~!(w) pour un w quelconque appartenant a €2. Voir [Zar]. De
plus, W est tel que le diagramme suivant commute. ’

WYy Q) —Fo axT

N /
Q

On en déduit que, topologiquement, ()~ 1(€2) est isomorphe & Q x T, ol
I — T est la normalisation de T .

Par conséquent si w, € €2, alors (h)~(Q) est topologiquement lisse.
Mais c’est impossible, car (h)~!(€)) contient I'un des points P;, image par
contraction d’une composante connexe de ad(E — A). Nous avions observé
précédemment que P; est vraiment singulier, ce qui implique que P; n’est
pas topologiquement lisse, via le théoreme de D. Mumford. Voir [Mum)].

2¢ cas. Supposons maintenant que w” est une valeur spéciale qui n’est

pas une valeur constante prise par s en restriction a une composante de E.
Dans ces conditions, on a le lemme suivant.

LEMME 4.6. Le nombre de branches de h™'(w'") est inférieur ou égal
au nombre de branches d’un germe générique.

Preuve du lemme 4.6. Soit D;, une composante dicritique de E. Soit d,
le degré de la restriction de 4 a D,. D’apres ce que nous avons dit ci-dessus,
il est clair qu’un germe générique possede exactement »  dj, branches, la
somme portant sur ’ensemble des composantes dicritiques de E.

Maintenant, par hypotheése sur w”, la transformée stricte de A~ !(w")
ne rencontre £ qu’aux composantes dicritiques. Pour estimer le nombre de
branches de h~'(w') plagons-nous en un point de contact x € D, de la
transformée stricte de h~!(w') avec D,. Soit deg(ﬁ|Db;x) le degré local en
x de la restriction /|p,. Ce degré est égal au nombre d’intersection en x
de D), avec h~'(w"). Or, ce nombre d’intersection est inférieur ou égal au

nombre de branches en x de A~ !'(w”). Comme d; est égal a Zdeg(ﬁ\ Dy X)
X
(la somme portant sur tous les points de contact x de A~ !(w”) avec Dy) le

lemme est démontré. L]
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REMARQUES SUR LA PREUVE DU LEMME 4.6.

1. Supposons que D, et D, sont deux composantes dicritiques distinctes
et que D, N Dy = {Q}. Supposons que w” = A(Q). Alors le nombre
de branches de A~ !(w") est strictement inférieur au nombre générique de
branches. En effet, dans la formule d’Hurwitz les branches de A~ '(w”) en O
interviennent a la fois pour D, et pour Dy .

2. 11y a égalité entre le nombre de branches de A~ !(w") et le nombre
générique de branches si et seulement si:

i) w” n’est pas égal a4 A(Q) pour un point Q qui est intersection de deux
dicritiques. (

ii) en chaque point de contact de la transformée stricte de h~!(w") avec un
dicritique, cette transformée stricte est composée de branches lisses, toutes
transverses au dicritique.

Dans tous les cas ou il y a inégalité stricte, la démonstration du théoreme
est achevée car, banalement, deux germes topologiquement équivalents ont le
méme nombre de branches.

Reste donc finalement le cas ou il y a €galité entre les nombres de branches.
Alors un calcul direct basé sur la méthode de C. Clemens et N. A’Campo
(voir [A’C]) montre que le nombre 1 de Milnor de A~ !(w') est strictement
supérieur au p générique. Plus précisément, on a le résultat suivant.

LEMME 4.7. Soit w” une valeur spéciale satisfaisant les conditions de
la remarque 2 ci-dessus. Alors la différence entre le | de Milnor ' de
RN (w") et le p générique [igen est donnée par | — pigen = Y (Cx + py — 1)
la somme portant sur tous les points de contact x de la transformée stricte
de h=Y(w") avec les dicritiqgues. Le nombre c, est le nombre de branches en
X et ly, est le p de Milnor du germe de courbe en x.

REMARQUE SUR LA PREUVE DU THEOREME 4.1. On pourrait objecter a
la démonstration que nous venons de donner qu’elle traite un peu légerement
le cas des germes du pinceau qui ne sont pas réduits. Supposons donc que
w € P! est tel que le germe h(z) = w n’est pas réduit. Il est facile de voir
que w est une valeur spéciale. On affirme que w ¢ Q. Il y a pour cela
tout d’abord une raison idéologique. En effet, la topologie d’un germe non
nécessairement réduit est représentée par un entrelacs dont chaque composante
est affectée d’un poids entier > O qui représente la multiplicité d’un point
générique de la branche correspondant a la composante considérée. Comme un
germe générique est réduit, ’entrelacs avec poids correspondant a h(z) = w
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ne peut pas étre isomorphe & 'entrelacs d’un germe générique. Mais en fait
I’entrelacs réduit d’un germe non réduit ne peut pas non plus étre isomorphe
a entrelacs d’un germe générique. En effet, s’il existe une composante D,
de E telle que la restriction de i A D, est constante, la démonstration donnée
s’applique sans changement. Sinon, comme au moins une branche du germe
h(z) = w est non réduite, la preuve du lemme 4.6 montre que ce germe a un
nombre de branches strictement inférieur au nombre de branches d’un germe
générique. :

REMARQUE SUR LE THEOREME 4.5. On a vu que P est I’éclatement de
I’idéal (hy, hy) engendré par h; et hy. On sait alors que la composition Pon de
P avec la normalisation n: £ — X est aussi 1’éclatement d’un idéal qui n’est
autre que la cloture intégrale I de 1’idéal (h;,h) dans ’anneau analytique
local régulier de dimension deux Opy,. Au sens de Zariski-Samuel (voir
I’appendice 5 de [Z-S]) I’idéal I est un idéal complet. Par définition (voir [Sp])
les singularités de X sont des singularités sandwich. Notre construction donne
a partir de la résolution de hjhy la résolution minimale de ces singularités
sandwich. Inversément, si / C Oy, est un idéal complet et si h; et h, sont
des €léments superficiels de [ (voir [Z-S] vol. 2, p. 285) tels que la multiplicité
de I'idéal (h;,hy) est égale a celle de 7, un théoréme de Rees montre que /
est la cloture intégrale de (h;,hy). De ceci résulte que toutes les singularités
sandwich sont obtenues apres normalisation d’un systeme linéaire de germes
de courbes planes.

§5. BONNES COMPOSANTES DICRITIQUES

Comme indiqué dans I’introduction, notre point de vue sur la C%-suffisance
est le suivant. Le germe f étant donné, nous cherchons une condition sur la
multiplicité de g pour que les germes f—Ag = O aient tous la méme topologie,
quel que soit A € C. Considérant le pinceau 7nf — Ag = 0 nous cherchons
donc a savoir quand son ouvert d’équisingularité Q contient C = P!\ { o0},

REMARQUE. Il découle facilement de la description des valeurs spéciales
donnée au paragraphe 4 que I’ouvert d’équisingularité d’un pinceau est égal
a P! tout entier si et seulement si:

1. le pinceau est résolu en un seul éclatement;

2. le degré de Alp — P! est égal a 1, ou D est le dicritique créé par
I’éclatement.

R
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Ces deux conditions reviennent a dire que 1’on a affaire a un pinceau de
courbes lisses a tangentes distinctes.

En dehors de ce cas banal, tous les pinceaux ont un ouvert d’équisingularité
strictement contenu dans P!. Nous nous intéressons donc au cas ot I’ouvert Q
est «le plus gros possible», c’est-a-dire consiste en P! privé d’un point (qui
est en 1’occurrence le point oo € P'). On pourrait nommer de tels pinceaux
«presque €équisinguliers ».

Pour reconnaitre ces pinceaux, revenons au germe de fonction méromorphe
h: U--— P! défini au début du paragraphe 2. Voici une facon un peu
différente de définir les valeurs spéciales (voir le début du paragraphe 3).
Considérons la résolution minimale de 4 et soit D, une de ses composantes
dicritiques. Associons & D, le sous-ensemble fini S, C P! formé:

1. des valeurs critiques de la restriction #|p, ;

2. des valeurs A(Q) pour chaque point d’intersection Q de D, avec une
autre composante du lieu exceptionnel.

On démontre facilement 1’affirmation suivante.

AFFIRMATION. L’ensemble des valeurs spéciales de h est égal a la réunion

US, ou b parcourt I’ensemble des composantes dicritiques {Dp} de la
b
résolution minimale de la fonction h.

DEFINITION. Nous dirons que la composante dicritique D, est bonne si
Sb - {OO}

REMARQUE. Nous choisissons 1’adjectif « bon» par commodité de langage,
mais aussi parce que les composantes bonnes sont étroitement liées aux
polynémes bons a l'infini («good») de W. Neumann et L. Rudolph. Voir
[Neu] et [L-W].

ILa démonstration du lemme suivant découle facilement du théoréme 4.1.

LEMME 5.1. La composante dicritique D), est bonne si et seulement si:
1. le degré de h|p, — P' vaut 1;

2. la composante Dy, ne rencontre qu’une seule autre composante D du
lieu exceptionnel et 'on a h(Q) = o0 ou Q =D, ND.
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Dans le paragraphe 7, nous déterminons le degré de CP-suffisance d’un
germe f en cherchant & quelle condition sur la multiplicit¢ de g les
composantes dicritiques de s = g sont toutes bonnes.

$6. ETUDE D’UN CAS PARTICULIER

¥ pe . vl z 1_ X’U b
Considérons le germe de fonction méromorphe donné par k(x,y) = o ou

u et v sont deux entiers supérieurs ou égaux a 1. La résolution minimale
de k(x,y) est donnée par la processus suivant. On écrit u = ru’ et v = rv’
avec pged(u’,v") = 1. On construit I’approximation lente de jj—l, Pour plus
de détails sur ce procédé, voir [L-M-W2] début de I’appendice. Le point de

départ est fourni par le développement en fraction continue de <; donné par:

1
W' Jv' = h +

hl +

h2+...+__1_
hs

S
ot 'ona O <K, 1 <H pour 1 <i<s—1, 2 <h. Posons m:Zhi.
i=0

LEMME 6.1.

l. 1l y a exactement une composante dicritique et c’est la composante
obtenue aprés m éclatements. Elle correspond précisément au nombre ra-

/

tionnel % de I’approximation lente.
v

2. La transformée stricte de y* = 0 est une curvette de la composante
qui correspond au sommet le plus a gauche. La transformée stricte de x* = 0
est une curvette du sommet le plus a droite.

3. Le degré de la restriction de k a la composante dicritique est égal a
r = pged(u, v).

4. Les sommets qui sont a gauche de la composante dicritique ont
valuation < 0 tandis que ceux qui sont a droite ont valuation > 0.

Conséquence du lemme 6.1 (importante pour la suite). La composante
dicritique est bonne si et seulement si u = 1. En effet u = 1 est €quivalent a:

1. r=1, ie. le degré de la restriction de £ au dicritique est égal a 1.

2. Les composantes du lieu exceptionnel qui rencontrent le dicritique ont

valuation < O (en fait il n’y a qu’une composante du lieu exceptionnel qui
rencontre le dicritique).
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Preuve du lemme 6.1. On observe qu’il ne s’agit de rien d’autre que de
construire la résolution de x¥ —y* = 0. Concrétement, en utilisant les calculs
du début de l’appendice de [L-M-W2] on vérifie qu'en un sommet % de
I’approximation lente, la valuation de £ sur la composante qui correspond a

. /
ce sommet vaut av — bu. Elle s’annule donc uniquement au sommet % =14

7 .
. ~ . / . 9 , ., o, / .
Les sommets qui sont a droite de ;5 satisfont 'inégalité¢ *; < ¢ tandis que

. & . /
ceux qui sont a gauche satisfont ¢ < 5. [

Utilisation du lemme 6.1. Revenons au paragraphe 2 et a la méthode
proposée pour €liminer les indéterminations de h = Z—; Dans la résolution
minimale de /1h; = 0 les éventuels points d’indétermination se trouvent au
point d’intersection du diviseur Z des zéros avec le diviseur P des pdles.
Localement, la situation est exactement celle du lemme. On obtient donc
une résolution de % en insérant a la place du point d’indétermination le lieu
exceptionnel donné par le lemme 6.1. Le point 2 du lemme dit exactement
comment se fait le recollement. L’entier —u est le coefficient dans P de la
composante de P qui passe par le point d’indétermination tandis que v est le
coefficient de la composante de Z qui passe par le point d’indétermination.
Ceci complete ce que nous avons dit a la fin du paragraphe 3. Connaissant
la topologie colorée de hjhy = 0 (par exemple via sa résolution minimale) |
on peut déterminer effectivement la topologie colorée de hjhohg, = 0. En
effet, la valuation de % le long de chaque composante du lieu exceptionnel
se calcule par les moyens habituels. Elle peut, par exemple, se ramener a un
calcul de coefficients d’enlacement. Ensuite, chaque point d’indétermination
est remplacé par le segment décrit par le lemme 6.1. Finalement, on obtient |
une résolution de hihyhee, = 0 en ajoutant, en plus des fleches colorées
de hh, = 0 des fleches d’une troisieme couleur a chaque dicritique D; en
nombre égal au degré de ’application A p, — PL.

§7. LE CALCUL DU DEGRE DE C°-SUFFISANCE

Soit 7: X — U la résolution minimale de f. Soit D une composante |
irréductible de 7~!(0) et soit v une curvette de D. Rappelons qu’il s’agit
d’un germe de courbe lisse, transverse a D en un point de D qui est lisse dans
la transformée totale de f = O par m. Par définition, le quotient d’Hironaka |
gp de D est le nombre rationnel gp = I(f,7.)/I(l,7v); dans cette formule ! |
représente une droite transverse a f =0 et 7y, est I'image de v par m (voir «
le paragraphe 1).
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La formule classique pour le calcul du nombre d’intersection implique
immédiatement que 1’on a I(f,y.) = valp(fom) et I(l,vx) = valp(lom). Par
conséquent, on a aussi gp = valp(f om)/valp(lom).

Soit maintenant N un entier > 0. La composante D appartient au diviseur
des poles de la fonction méromorphe how, ol h = f(x,y)/ I(x, y)VT1 si et
seulement si valp(f o) /ValD(lN tlom) < 1. Autrement dit, si et seulement
sigp <N-+1.

LEMME 7.1. Supposons qu’on a qp < N+ 1 pour toutes les composantes
de rupture de w1(0). Alors on a qp < N + 1 pour toutes les composantes
de 771(0). De plus, I’égalité ne peut avoir (éventuellement) lieu qu’en une
composante D° de 7w~1(0) qui ne rencontre qu’une seule autre composante
de m~1(0) et on passe exactement une composante de la transformée stricte
de f par w. (Nous dirons que D° satisfait la condition C.)

Pour démontrer le lemme 7.1 nous aurons besoin d’un théoreme de
croissance. Pour énoncer ce dernier, il est plus confortable d’avoir recours
a l’arbre dual R de la résolution m. Nous renvoyons au §3 de [L-M-W2]
pour le vocabulaire qui s’y rattache. Remarquons aussi que la composante de
7~1(0) obtenue par éclatement de ’origine de C? (c’est-a-dire celle qui porte
le numéro 1) est la composante ou s’attache la transformée stricte de [ par
7. Le théoreme de croissance s’énonce alors ainsi.

THEOREME 7.2. Soit « une aréte de R, d’extrémités D et D'. Supposons
que D est plus proche de la composante numéro 1 que D’. Alors on a
gp < qp'. De plus, I'inégalité est stricte si et seulement si en parcourant
l'aréte o en allant de D vers D', on se rapproche d’au moins une composante
de la transformée stricte de f = 0 (autrement dit, si l'on se rapproche d’au
moins une fleche).

Pour une preuve du théoreme 7.2 voir le théoréme 3.2 et son corollaire
3.3 de [L-M-W2].

Preuve du lemme 7.1.  On remarque pour commencer qu’une composante
de 77'(0) od passe au moins une composante de la transformée stricte de
Jf =0 n’est pas une composante de rupture si et seulement si elle satisfait la
condition C.

S’1l n’existe pas de telle composante, le maximum des gp ou D parcourt
Pensemble des composantes de 7~ 1(0) est €gal au maximum des gp ou D
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parcourt seulement I’ensemble des sommets de rupture, a cause du théoreme
de croissance. Le lemme 7.1 est donc démontré dans ce cas.

Préoccupons-nous donc des composantes satisfaisant la condition C.
L’archétype d’une telle situation est fourni par les singularités d’équation
y(y? —xP) =0 avec p > g (et pged(p,q) = 1 si I’on veut). Il est amusant de
constater que T. C. Kuo dans [Kuol] p. 226 a également dii traiter avec un soin
particulier ces mémes singularités. En un sens, ce sont celles pour lesquelles la
valeur donnée pour le degré de C°-suffisance est la plus «limite ». La résolution
minimale d’une telle- singularité est donnée par le processus d’approximation
lente donné plus haut. Il y a deux composantes de 7~ 1(0) ol passe (au moins)
une composante de la transformée stricte. L'une D’ correspond au nombre
rationnel p/qg. Lautre D" correspond au nombre rationnel (en fait entier)
B0+ 1, ot h¥ est la partie entiere de p/q. C’est cette derniére composante
qui satisfait la condition C.

On a gp :p+§ et gp = p+h°41. On voit qu’en prenant N = p+ [g]

I’égalité est atteinte en D", puisque h’ = [g—}
Le cas général se démontre de facon analogue, en utilisant les formules

données dans [L-M-W2]. ’égalité n’est pas nécessairement atteinte. L]

THEOREME 7.3. Supposons f a singularité isolée a ['origine de C>.
Alors Suff(f) est égal au maximum des [qp] ou D parcourt I’ensemble des
composantes de rupture de w=1(0) (7 est la résolution minimale de f =0).

Preuve du théoreme 7.3. Posons N = mgx{[qD]} ou D parcourt

I’ensemble des composantes de rupture de 7~ 1(0). Dans un premier temps,
il s’agit de montrer que f — A\g = 0 a la méme topologie que f, pour tout
A e C ettout g € m¥t!. La preuve est divisée en un certain nombre de cas.

1¢ cas: g(x,y) = M(x,y) ot lx,y) = 0 est I’équation d’une droite
transverse a f(x,y) =0 etou M >N + 1. )

Ceci est le cas exemplaire, qui rend particulierement visible pourquoi le
degré de CP-suffisance a la valeur annoncée. Voir aussi la remarque 2 la fin
de la preuve du théoreme 7.3.

Les calculs que nous venons de faire montrent que toutes les composantes
de 771(0) sont dans les poles de hom ol h = (f: (M) sauf éventuellement
pour certaines composantes satisfaisant la condition C (situation que nous
traiterons un peu plus loin).

En chaque point de contact de la transformée stricte de f, nous avons un :
point d’indétermination de la fonction méromorphe 4o 7 lorsque I’inégalité
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est stricte. En ce point, nous appliquons le lemme 6.1 2 ho7 en observant que
u=1 car la singularité est isolée. C’est ici que cette hypothese intervient !
Selon la remarque qui suit la preuve du lemme 6.1 toutes les composantes
dicritiques obtenues sont bonnes.

Supposons maintenant que l’on a une composante D° satisfaisant la
condition C, que gp, = N+1 et que M = N+1. Dans ce cas, cette composante
est dicritique pour how. Mais elle est bonne car la seule composante de 7~1(0)
qu’elle rencontre est dans les poles (théoréme de croissance!) et le degré de
la restriction de hom a D° vaut 1, puisque D’ ne rencontre qu’une seule
composante de la transformée stricte de f = 0.

2¢ cas: g(x,y) € m” avec M > N+ 1 et la transformée stricte de g par
7 ne s’attache en aucun point de contact de la transformée stricte de f = 0.

La démonstration est la méme que dans le 1% cas. En effet, le calcul
classique des multiplicités du diviseur (go7r) montre qu’en chaque composante
D de 7~ 1(0) on a valp(Vt! o 1) < valp(g o).

3¢ cas: g(x,y) € m¥ avec M > N + 1, mais la transformée stricte de
g = 0 par 7 s’attache en (au moins) un point de contact de la transformée
stricte de f = 0.

Soit Q un tel point. Il y a deux sous-cas 3a et 3b.

Cas 3a: La transformée stricte de g en Q ne contient pas ensemblistement
la transformée stricte de f = 0. (Rappelons que 7 est la résolution minimale
de f et donc la transformée stricte de f =0 en Q est lisse et transverse au
lieu exceptionnel.)

Eclatons le point Q. Nous obtenons une nouvelle composante D’ et une
nouvelle projection 7’ (qui remplace 7). On a: valp/(fon’) = valp(fom)+1
et valp(gon’) = valp(gom)+m avec m > 0. En un nombre fini d’éclatements
on sépare g de f et I'on se retrouve dans la situation du 2¢ cas. Le fait que
7’ n’est pas minimale ne géne pas.

Cas 3b.: La transformée stricte de g =0 en Q contient celle de f = 0.
Autrement dit, on a une composante fixe.

Un calcul analogue au précédent montre que 1’on peut commencer par faire
des éclatements pour se ramener au cas ou la transformée stricte de g = 0
est €gale a celle de f = 0. En présence d’une composante fixe, il ne sert a
rien de faire des éclatements. Choisissons plutdt des coordonnées locales en
Q telles que Y = 0 soit I’équation du lieu exceptionnel et que X = 0 soit
I’équation de la transformée stricte de f. Alors le pinceau local associé i

ﬁow s’€crit nX — AuX"Y" = 0 ol u est une unité en X et Y. Ici m est
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un entier > 0. Le point important est que » > 0 méme dans le cas ou Q
appartient a une composante D satisfaisant la condition C. La raison est que
valp(/N 1 o ) < valp(g o m) car g passe par Q tandis que [ s’attache en la
composante numeéro 1. Ceci découle du calcul usuel des multiplicités pour les
résolutions des singularités de courbes planes. On voit alors que le pinceau
local en QO n’a que co comme valeur spéciale. Ceci achéve la preuve de la
premiere partie du théoreme 7.3.

Dans un deuxieme temps, nous allons maintenant montrer que, si M est
un entier > O strictement inférieur & max {[gp]} ou D parcourt I’ensemble
D

des composantes de rupture de 7~ !(0), alors le jet j™(f) n’est pas
topologiquement suffisant.

Manifestement, il suffit de montrer que le pinceau f(x,y) — M(x, yyM*+! =0
n’est pas équisingulier pour A € C. (Comme précédemment /(x,y) = 0 est
I’équation d’une droite transverse a f(x,y) =0.)

Par hypothése, il existe au moins une composante de rupture D’ telle que
M+1 < gp . Par le théoreme de croissance, on peut supposer que D’ contient
des points de contact de la transformée stricte de f = 0.

Supposons pour commencer que 1’inégalité est stricte. Comme [ est
transverse a f = 0, la résolution minimale de f = 0 est aussi celle de
If = 0. La transformée stricte !’ de [ est dans le diviseur P des pbles
de (f : (M) tandis que, par hypothése, la composante D’ est dans le
diviseur Z des zéros de /. Notons I' la géodésique de I’arbre de la résolution
minimale de f qui relie le sommet numéro 1 a D’. La démonstration de
la proposition 2.1 indique que I' contient des composantes dicritiques ou
des points d’indétermination. (Les deux possibilités peuvent coexister.) En
ce qui concerne les points d’indétermination, appliquons le procédé décrit
dans le lemme 6.1. Nous obtenons une nouvelle géodésique I qui relie le
sommet numéro 1 a D’. Soit D" la composante dicritique dans I” qui est la
plus proche de D’. Alors, ’ensemble des valeurs spéciales S associé a D"
contient au moins une valeur distincte de oco. En effet, par construction, D"
rencontre une composante D telle que D ND = {Q} et h(Q) # co.

S’il y a égalité M + 1 = gp alors la composante D’ est dicritique. Si
D’ rencontre des composantes de 7~ '(0) qui ne sont pas dans les poles,
on considére la valeur )\ prise par h au point d’intersection d’une de ces
composantes avec D’. Par construction A" # oo et 1’on conclut comme ci-
dessus. Si D’ ne rencontre que des composantes qui sont dans les pdles, alors
D’ (qui est une composante de rupture) contient au moins 2 points de contact
de la transformée stricte de f = 0.
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Par conséquent, le degré h|lp — P! est au moins égal & 2. La restriction de
h a D' aura au moins une valeur critique distincte de co (grdce au théoreme
de Hurwitz). Par conséquent Sp contient au moins une valeur distincte de
oo et I’on conclut comme précédemment. Fin de la preuve du théoreme 7.3.

REMARQUES FINALES.

1. La preuve du théoréme 7.3 montre clairement que si f n’est pas a
singularité isolée & 1’origine, aucun jet j*(f) n’est suffisant (pour r fini). En
effet, choisissons un point de contact de la transformée stricte de f = 0 avec
771(0) ou cette transformée stricte n’est pas réduite.

Appliquons le lemme 6.1 pour g = I(x,y)" avec N grand et h = J;.
On voit que ’on a u > 1 car f n’est pas réduite. La remarque qui suit
le lemme 6.1 indique que la composante dicritique créée par 1’utilisation du
lemme 6.1 n’est pas bonne. Il est facile de déterminer grice au lemme 6.1
quel est le membre générique du pinceau ainsi créé (il dépend de ’entier N).
Bien sfir, ce membre générique est a singularité isolée. Ceci donne un autre

point de vue sur les résultats de H. Maugendre dans sa these. (Voir [Mau].)

2. Soit l(x,y) = 0 I’équation d’une droite transverse a f(x,y) = 0. La
preuve du théoréme 7.3 montre que le jet j7)(f) est topologiquement suffisant
si et seulement si f — AI'T! est topologiquement équivalent & f pour tout
A € C. Comparer avec B. Teissier dans [Tei2] p. 280.

§8. UN PETIT HISTORIQUE DE LA CO-SUFFISANCE

Le concept de CY-suffisance apparait dans ’article de R. Thom au colloque
de Bombay. (Voir [Thom].) Le role de I'inégalité de Lojasiewicz y est mis en
évidence.

Au cours des années 1970-80, plusieurs auteurs (voir, entre autres, [Kuo2],
[Bo-Lo], [Ch-Lu]) ont établi que Suff(f) est donné par I’inégalité de
Lojasiewicz de la facon suivante. On considere les exposants 0 > 0 tels
qu’il existe un voisinage U de I’origine et une constante C > 0 tels que ’on
ait: |grad f(z)| > Clz|° pour tout z € U. La borne inférieure des 6 ayant
cette proprieté est [’exposant de Lojasiewicz Loja(f). Le résultat obtenu par
plusieurs auteurs est que Suff(f) = [Loja( f)] + 1, ou [x] désigne la partie
entiere de x.

Dans [Kuo-Lu] T.C. Kuo et Y.C. Lu ont donné une facon explicite de
calculer I’exposant de Lojasiewicz pour les germes de courbes planes, en
utilisant les développements de Puiseux des branches de f = 0.

->.
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En 1975, B. Teissier a démontré (pour n quelconque) que Loja(f) est
€gal au maximum des invariants polaires % selon sa définition des invariants

g

polaires. Voir [Teil] p. 626. A la méme époque, il démontre directement que
Suff(f) = max { [,ﬂ } Voir [Tei2] p. 280. Dans [Mer] M. Merle a explicité

une fagon de calculer les invariants polaires pour les branches de courbes
planes.

Dans [L-M-W1] et [L-M-W2] nous avons donné avec F. Michel une
interprétation topologique des invariants polaires des courbes planes et une
facon simple de les calculer a 1’aide des quotients d’Hironaka (appelés alors
coefficients d’insertion) de la résolution minimale de f. Dans le présent travail,
nous avons donné une démonstration directe (pour les courbes planes) du fait
que Suff(f) se calcule a partir des quotients d’Hironaka.

D’autres points de vue sur Suff(f) pour les courbes planes sont exprimés
dans [B.Li] et [Cos].

Finalement, au chapitre 7 de son livre [Cas], E. Casas-Alvero détermine
également le degré de CY-suffisance d’un germe de courbe plane par le biais
des pinceaux. Son étude est basée sur la théorie des points infiniment voisins
a la Enriques, développée dans les premiers chapitres de son livre.

Nous terminons ce paragraphe en comparant les valeurs obtenues pour
Suff(f) par quelques auteurs, pour aider le lecteur a s’y retrouver. Les
invariants polaires —fn‘i de B. Teissier sont définis par I’égalité

& 1T f=0)
my mult(I’,)

ou {Iy}, désigne ensemble des branches d’une polaire de f. (Voir [Tei2]
p.270.)

Dans nos deux articles cités avec F. Michel, nous avons démontré que
’ensemble {I(T,,f = 0)/mult(I’))}, est égal a I’ensemble {gp} ou D
parcourt I’ensemble des composantes de rupture de la résolution minimale
de f. Compte tenu de la différence d’une unité entre les 57‘; et les gp notre
théoréme 7.3 est bien numériquement équivalent au théoreme de B. Teissier,
a la p. 280 de [Tei2].

On observera que le méme décalage d’une unité se retrouve dans la formule
Suff(f) = [Loja(f)] + 1 citée au début de ce paragraphe. Compte tenu du

cor. 2 p. 270 de [Tei2] qui affirme que Loja(f) = max{,—ii} (voir aussi
q

[Teil] p. 626) tous les énoncés sont bien numériquement équivalents.
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