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3.6. THEOREM ([L 1,2]). Let R be an element of the free group F of
finite rank m which is primitive with respect 1o the lower central series.
Denote by k = w(R) its weight and by (R) the normal closure of R in F.
Let G=F/(R) and let L(F) and L(G) be the corresponding Lie algebras.
Let then r be the image of R in Ly(F), the k-th component of L(F) and
denote by I the ideal of L(F) generated by r.

Then I is the kernel of the canonical homomorphism of L(F) onto L(G),
Le.

L(G) = L(F)/I.

Moreover for all n > 1 the abelian group L,(G) is a torsion free group
whose rank is the n-th coefficient of the Maclaurin power series of the
function

U(z) =

1 —mz+ZF

4. MORE ON UNIFORMLY EXPONENTIAL GROWTH
OF ONE-RELATOR GROUPS

Any two-generated one-relator group G can be presented in the form
G = <a,b - dw(a. b) = 1> where &k € Z and w(a.b) belongs to the
commutator subgroup [F,F] of the free group F = F(a.b) freely generated
by a and b (this follows from Lemma 1.1). Since a and b constitute a basis
in F/v,(F) and [a.b] generates ¥,(F)/~3(F), one can also present G in the
form

G = <a,b - d'[a. b]]w(a,b) = 1>

where k.l € Z. and w(a.b) € vi(F).

In this section we shall see that, under suitable assumptions on k./ and
w(a. b), the corresponding group has uniformly exponential growth.

As an application of Labute’s Theorem we get the following:

4.1. PROPOSITION. Let G = (a.b:R(a.b)=1) be such that R is

primitive with respect to {ﬂ/n(F)}nOC: . and R € 3(F). Then G has uniformly
exponential growth.

Proof. If w(R) > 3, Theorem 3.6 shows that the corresponding function

U(z) has a pole zp with 0 < zp < 1. It follows that the coefficients c,(G)

grow exponentially. By Corollary 3.2, A\.(G) > 1. [J
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For Proposition 4.3 we need the following notations. Let £ be a positive
rational number such that £ # 1 and denote by Q¢ the smallest subgroup of
the additive group of the rationals, which contains 1 and is invariant under
multiplication by ¢ and ¢~!. In other words if & = 15) with p,g € Z and
ged(p,q) = 1 then Q¢ = Z[%, ;11]. Consider now the automorphism « of Qg
defined by a(x) = §x, x € Q¢. Let Z act on Q¢ by powers of «. Denote
by G¢ = Q¢ X4 Z the corresponding semidirect product. The group G¢ is
a two-generated group with system of generators {a, b} where @ =1 € Q¢
and the element b implements the automorphism a: b~ 'xb = a(x), x € Qe .

Let now d be a natural number > 2 and set B; = HZ 4. The group Z
acts on By by shifts. The corresponding semidirect product I'(d), also denoted
by Z, 1 Z, is called the wreath product of Z and Z,;. We shall consider I'(d)
as generated by a = (...,0,0,1,0,0,...) where 1 denotes a generator of Z,
(in the expression of & it appears at the O-th coordinate place), and by b,
the element which implements the shift.

We have short exact sequences

0 Q¢ — G¢ Z 0
0O— By —1d)—Z—0

so that G¢ and I'(d) are two-step solvable. Slightly modifying the proof of
Proposition 2.6 one gets

42. LEMMA. The groups G¢ and 1(d) have uniformly exponential
growth.

Our last class of two-generated one-relator groups of uniformly exponential
growth is determined in the following statement.

4.3. PROPOSITION. Let G = <a,b;ak[a,b]lw(a, b) = 1> with k.1 € 1. and
w(a,b) € F? where F® = [[F,F),[F,F]] denotes the second commutator
subgroup of the free group F = F(a,b) on a and b. Suppose that
(k, ) & {+(2, 1), £(1,1), £(1,0),+(0, 1)}. Then G has uniformly exponential
growth.

Proof. Set Gy = <a,b;ak[a,b]lw(a,b)>, Set also
ék,l - <Cl7 b: ak[a, b]l'l.U(Cl, b)/ F(2)> e <a7 b, ak[a’ b]l7 F(2)>

which is a 2-step solvable quotient group of Gy ;. We shall show that (—;kvl can
be mapped homomorphically onto either G¢ or I'(d) for a suitable positive
rational number £ # 1 or natural number d > 2.
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Suppose first that k # 1.2/ and Ik # 0. These assumptions guarantee that
€= ’#| # 0.1. Then the map a —— (51)59”(#)]) —— b from F onto Gg¢
factorizes through G, ;. Indeed if we suppose, for instance, that # > (0, then
the image of a*[a.b]’ is the number k+I(—1+ &) € Q¢ which is zero. Thus
Gy, maps onto Ge.

Suppose now that ged(k.l) = d or (k.I) € {£(d.0).£(0.4)} for some
d > 2. Then, the same arguments as before show that Gj, can be mapped
onto I'(d) via the map a +— a.b+—— b.

Finally observe that Gg is the free two-generated two-step solvable group
F/F® and thus maps homomorphically onto I'(d) for any d > 2.

The proof follows from Lemma 4.2. [

Remark that the two-generated one-relator groups that are not covered by
our statements have their relator that can be reduced to one of the form buw,
[a.b]w or ba~'baw, where w = w(a.b) € FP.

Let us finish the paper by the following observation.

In [GrLP] it was conjectured that if G is a group with m generators and
p relations, then

AN(G) > 2m—p) — 1.

For one-relator groups there is one case when Gromov’s conjecture holds
true.

4.4. PROPOSITION. Let G = (aj.as..... am . R(ay.as. . ... am) = 1), with
m > 2, be a one-relator group such that the relator R does not belong to the
commutator subgroup F' of the free group F of rank m freelv generated by
ay.ar.....ay,. Then \.(G) > 2m — 3.

Proof. We may assume that G is torsion-free. Indeed if U.V € F
are such U = V¥ for some k € Z, then U € F' iff V ¢ F. If

the relator R is a proper power, say R = W5, then G maps onto
G = (ay.as.....a, Wa.as..... a,) =1). which is torsion-free, and
A(G) = A (Gy).

Under our assumptions on R, H{(G.Q) = Z"~! and the second rational

homology group H>(G.Q) vanishes.

In [S] it is proven that if H>(G.k) = 0, where k is a field, then any subset
{xj} € G, whose image in H{(G.K) is linearly independent, freely generates
a free group.

Let X = {x;.x2.....x,} be a finite system of generators for G. Then
X={x...... Y, }, where ¥; denotes the image of x; in H,(G. Q). generates
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H(G,Q). We can find an independent subsystem {)‘cil, oo } in Hi(G,Q)
such that its pre-image {x;,...,x; } freely generates a free group. Therefore
(G >2m—-1)—1=2m-3. [J

It seems to us that for a one-relator group G of rank m > 3 the inequality
A(G) > 2m — 3 cannot be deduced directly from Magnus’ Theorem as it is
claimed in [GrLP].
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