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AMENABILITY AND GROWTH
OF ONE-RELATOR GROUPS

by Tullio G. CECCHERINI-SILBERSTEIN and Rostislav I. GRIGORCHUK

ABSTRACT. An algorithm showing whether a group given by a one-relator
presentation is amenable or not is constructed. Sufficient conditions for a one-relator
group of exponential growth to have uniformly exponential growth are also given.

0. INTRODUCTION

A one-relator group is a group G which admits a presentation
(*) G:<a17a27-'-7am . R(a1>a2>"'>anz):1>

with one defining relation.

The paper by G. Baumslag [B 1] is a comprehensive survey of results
about one-relator groups. In particular this paper stresses the role of algorithmic
problems in the theory of one-relator groups.

Recently the interest in functional-analytical and asymptotical properties
of one-relator groups has increased. For instance, the entropy of one-relator
groups was discussed in [GrLP], random walks and Markov operators on one-
relator groups where investigated in [CV], [BCCH], [BC], and the K-functor
of reduced C*-algebras of one-relator groups was computed in [BBV]. Also
the growth functions of the groups I, = <z‘,a ctat~! = ”>, n# 0,41, and
of some other one-relator groups were calculated in [CEG] and [EJ].

Recall that a discrete group G is amenable if there exists a finitely
additive measure p: P(G) = {0, 1}G — [0, 1] which is G-(left)-invariant
(W(gE) = w(E) for all ¢ € G and E C G) and such that, in addition,
(G) = 1. For our purpose it will be enough to know that a group containing
a free subgroup of rank two is not amenable, and that, on the contrary, any
solvable group is amenable ([G]).
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As easily follows from the paper of Karrass and Solitar [KS], all amenable
one-relator groups are in the following list:

(1. (a:d" =1) = Z,, cyclic groups of finite order n = 1,2,...;
2. {(a,b:b=1) =2 1Z, the infinite cyclic group;
3. (a,b:bab™" =a"), n#0.
This class splits into two subclasses:
3, n=+1: (a,b:bab~" =a) > 27>
(k%) < n=—1: <a,b:bab“1:a—1>:
this group contains a subgroup = Z? of index two,
but it is not & Z?;
3, n#0,£1: <a,b cbab™! = a”) .

these groups are 2 step-solvable and of exponential

L growth (pairwise non-isomorphic).

Also Tits’ alternative does hold for one-relator groups: any one-relator
group either contains a free subgroup of rank two or is solvable (and from
the above list).

But in the Karrass-Solitar paper no algorithm is given answering the
question whether, given a one-relator presentation, the corresponding group
is solvable or not. In Section 1 we present a simple algorithm and, as a
consequence, we re-obtain the above list of all amenable one-relator groups.

In the second part of the paper we investigate the uniformly exponential
growth for one-relator groups of exponential growth.

Recall that if G is a group with a finite generating system A,

|9|A = min{n rg=aiax- -4y, 4 EA}

is the length of an element g € G with respect to A and ~§(n) =
I{g € G:|g|, <n}| isthe growth function of G with respect to the generating
system A. The limit

M(G) = lim (/7§

exists and A (G) > 1. The group G 1s said to have exponential growth
(respectively sub-exponential growth) if M (G) > 1 (resp. M(G) = 1) for
some (and therefore for any other) finite system of generators A.
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Denoting now by
A(G) = Inf A (G)

the minimal growth rate of G, where the infimum is taken over all finite
generating systems, the group G has uniform exponential growth if \.(G) > 1.
This last concept is due to Avez [A] where the number

h(G) = log(A«(G))

is called the entropy of the group G and it is discussed in [GrLP], [SW] and
in the survey paper [GH].

The simplest example of a group with uniformly exponential growth is the
free group F, of finite rank m > 2 for which the minimal growth rate 1S
M(F,) =2m — 1, see for instance [GH].

It is not known whether a group of exponential growth has necessarily
uniformly exponential growth or not. We formulate the following :

0.1. CONIJECTURE. All one-relator groups of exponential growth have
uniformly exponential growth.

Conjecture 0.1 is true for one-relator groups of rank m > 3 and for one-
relator groups with torsion, therefore we focus our attention on two-generated
one-relator groups and give sufficient conditions for such groups to have
uniformly exponential growth. We present a new method for estimating the
minimal growth rate of a finitely generated group using growth functions of
the corresponding graded Lie algebra and apply it to one-relator groups.

1. AN ALGORITHM FOR CHECKING AMENABILITY

Let G be a one-relator group with presentation (x); the number m of
the generators of G in the presentation is called the rank of the presentation.
Untill Section 4 we shall assume that R is cyclically reduced and non trivial.

The next observation is well known. We shall include the proof stressing
the algorithmic aspect of the statement.

I.1. LEMMA. Let G = (a,b,...:R(a,b,...)) be a one-relator group
with at least two generators. Then G has a presentation (t,...:R'(t,.. )
with o(R") = 0, where o,(R') denotes the sum of the exponents of t in the
word R'. This second presentation can in fact be produced, starting from the
original one, in an algorithmical way.
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