Zeitschrift: L'Enseignement Mathématique
Herausgeber: Commission Internationale de I'Enseignement Mathématique

Band: 43 (1997)

Heft: 3-4: L'ENSEIGNEMENT MATHEMATIQUE

Artikel: AMENABILITY AND GROWTH OF ONE-RELATOR GROUPS
Autor: Ceccherini-Silberstein, Tullio G. / GRIGORCHUK, Rostislav I.
DOl: https://doi.org/10.5169/seals-63284

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich fur deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veroffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanalen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En regle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
gu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 08.01.2026

ETH-Bibliothek Zurich, E-Periodica, https://www.e-periodica.ch


https://doi.org/10.5169/seals-63284
https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en

L’Enseignement Mathématique, t. 43 (1997), p. 337-354

AMENABILITY AND GROWTH
OF ONE-RELATOR GROUPS

by Tullio G. CECCHERINI-SILBERSTEIN and Rostislav I. GRIGORCHUK

ABSTRACT. An algorithm showing whether a group given by a one-relator
presentation is amenable or not is constructed. Sufficient conditions for a one-relator
group of exponential growth to have uniformly exponential growth are also given.

0. INTRODUCTION

A one-relator group is a group G which admits a presentation
(*) G:<a17a27-'-7am . R(a1>a2>"'>anz):1>

with one defining relation.

The paper by G. Baumslag [B 1] is a comprehensive survey of results
about one-relator groups. In particular this paper stresses the role of algorithmic
problems in the theory of one-relator groups.

Recently the interest in functional-analytical and asymptotical properties
of one-relator groups has increased. For instance, the entropy of one-relator
groups was discussed in [GrLP], random walks and Markov operators on one-
relator groups where investigated in [CV], [BCCH], [BC], and the K-functor
of reduced C*-algebras of one-relator groups was computed in [BBV]. Also
the growth functions of the groups I, = <z‘,a ctat~! = ”>, n# 0,41, and
of some other one-relator groups were calculated in [CEG] and [EJ].

Recall that a discrete group G is amenable if there exists a finitely
additive measure p: P(G) = {0, 1}G — [0, 1] which is G-(left)-invariant
(W(gE) = w(E) for all ¢ € G and E C G) and such that, in addition,
(G) = 1. For our purpose it will be enough to know that a group containing
a free subgroup of rank two is not amenable, and that, on the contrary, any
solvable group is amenable ([G]).
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As easily follows from the paper of Karrass and Solitar [KS], all amenable
one-relator groups are in the following list:

(1. (a:d" =1) = Z,, cyclic groups of finite order n = 1,2,...;
2. {(a,b:b=1) =2 1Z, the infinite cyclic group;
3. (a,b:bab™" =a"), n#0.
This class splits into two subclasses:
3, n=+1: (a,b:bab~" =a) > 27>
(k%) < n=—1: <a,b:bab“1:a—1>:
this group contains a subgroup = Z? of index two,
but it is not & Z?;
3, n#0,£1: <a,b cbab™! = a”) .

these groups are 2 step-solvable and of exponential

L growth (pairwise non-isomorphic).

Also Tits’ alternative does hold for one-relator groups: any one-relator
group either contains a free subgroup of rank two or is solvable (and from
the above list).

But in the Karrass-Solitar paper no algorithm is given answering the
question whether, given a one-relator presentation, the corresponding group
is solvable or not. In Section 1 we present a simple algorithm and, as a
consequence, we re-obtain the above list of all amenable one-relator groups.

In the second part of the paper we investigate the uniformly exponential
growth for one-relator groups of exponential growth.

Recall that if G is a group with a finite generating system A,

|9|A = min{n rg=aiax- -4y, 4 EA}

is the length of an element g € G with respect to A and ~§(n) =
I{g € G:|g|, <n}| isthe growth function of G with respect to the generating
system A. The limit

M(G) = lim (/7§

exists and A (G) > 1. The group G 1s said to have exponential growth
(respectively sub-exponential growth) if M (G) > 1 (resp. M(G) = 1) for
some (and therefore for any other) finite system of generators A.
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Denoting now by
A(G) = Inf A (G)

the minimal growth rate of G, where the infimum is taken over all finite
generating systems, the group G has uniform exponential growth if \.(G) > 1.
This last concept is due to Avez [A] where the number

h(G) = log(A«(G))

is called the entropy of the group G and it is discussed in [GrLP], [SW] and
in the survey paper [GH].

The simplest example of a group with uniformly exponential growth is the
free group F, of finite rank m > 2 for which the minimal growth rate 1S
M(F,) =2m — 1, see for instance [GH].

It is not known whether a group of exponential growth has necessarily
uniformly exponential growth or not. We formulate the following :

0.1. CONIJECTURE. All one-relator groups of exponential growth have
uniformly exponential growth.

Conjecture 0.1 is true for one-relator groups of rank m > 3 and for one-
relator groups with torsion, therefore we focus our attention on two-generated
one-relator groups and give sufficient conditions for such groups to have
uniformly exponential growth. We present a new method for estimating the
minimal growth rate of a finitely generated group using growth functions of
the corresponding graded Lie algebra and apply it to one-relator groups.

1. AN ALGORITHM FOR CHECKING AMENABILITY

Let G be a one-relator group with presentation (x); the number m of
the generators of G in the presentation is called the rank of the presentation.
Untill Section 4 we shall assume that R is cyclically reduced and non trivial.

The next observation is well known. We shall include the proof stressing
the algorithmic aspect of the statement.

I.1. LEMMA. Let G = (a,b,...:R(a,b,...)) be a one-relator group
with at least two generators. Then G has a presentation (t,...:R'(t,.. )
with o(R") = 0, where o,(R') denotes the sum of the exponents of t in the
word R'. This second presentation can in fact be produced, starting from the
original one, in an algorithmical way.
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Proof. Let a and b be two generators involved in R; if 0,(R) =0 or
op(R) = 0 we are already done. If not, suppose that 0 < |o,(R)| < |op(R)|;
by exchanging a with a~! and/or b with b~! if necessary, we can suppose
that 0 < 0,(R) < op(R). Set @’ = ab and b’ = b; then, if R'(d’,b’) is
the expression of R in terms of the new generators &' and b’, one has
gy (R") = 0,(R) and |op(R)| < ou(R). Applying this procedure inductively
for at most |o,(R)| + |op(R)| times one gets the claimed presentation. [

Note that the rank of the second presentation in the previous lemma
coincides with the rank of the initial one.

1.2. THEOREM. The following is an algorithm which establishes if a
given one-relator group G with presentation (x) is amenable or not:

Step 1: If m > 3 then G is not amenable. If m =1 then G is amenable;
if m=2 go to next step.

Step 2: Check if R is a power of one of the generators. If this is the
case and the power is proper then G is not amenable, if R coincides, up to
inversion, with one of the generators then G is amenable. Otherwise go to
next step.

Step 3 : Using the algorithm from the above lemma, change the presentation
of G so that the sum of the exponents of one of the generators in the relator
is zero. Then G is amenable iff, up to a relabeling and inversion of the
generators, and up to a cyclic permutation of the relator, the presentation

obtained is of the form (t,s:tst™'s™" = 1), with n € Z\ {0}.

Proof. Recall that the Freiheitssatz of Wilhelm Magnus ([MKS: Thm.
4.10] and [LS: IV Thm. 5.1]) states that, if R = R(ay,a,...,a,) 1S a
cyclically reduced word in ay,as,...,a, and involves a,,, then the subgroup
of G=(aj,as,...,an  R(ay,ay,...,a,) =1) generated by aj,ay,...,dn_1
is freely generated by them.

(1) If m > 3 then, by Magnus’ Theorem, G contains the free group on
two generators and thus it is not amenable. If m =1 then G = (a: d" = 1)
is cyclic and therefore amenable.

(2) Let m = 2. If R is a proper power of one of the generators, say
R =da" with [n]| > 2, then G is isomorphic to the free product Z * Zj, of
the infinite cyclic group and the cyclic group of order |n| > 2 and it is not
amenable because its commutator subgroup is a free group of infinite rank.
If R coincides, up to inversion, with one of the generators then G is infinite
cyclic and therefore amenable.

ko
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(3) Suppose now that (a,b:R(a,b)=1) is a presentation of G with
o,(R) = 0. If we denote by b; = a’ba™", i € Z, then the relator R can be
expressed as a word in the b;’s just replacing each b* in R(a,b) by b,
where j is the sum of the exponents of a in the subword of R preceding the
given occurrence of b*. We shall denote this word by R'(by, byti,---,bm),
where m and M are the minimum and, respectively, the maximum subscript
occurring in the expression of R'. Note that since R(a, b) is cyclically reduced,
then R’ is cyclically reduced as well and m < M.

It is known [LS: IV, proof of Thm. 5.1] that any one-relator group with
> 2 generators is an HNN-extension (H;A, B, ¢) of another one-relator group
H. In our situation

H = <bmabm+17 oo 7bM;R/(bma bln+l7 v 7bM)>
A = subgroup of H generated by by, bpti1,...,bp—1
B = subgroup of H generated by b, 11,bm+2,...,bu
p:A>3bj— b €B, i=mm+1,... M—1.
Therefore G also admits the following presentation
G={(a,by,...,by :R'(bp,...,by) =1, abja™" = by, i=m,....M —1).

The subgroups A and B are free of rank M —m and if M —m > 2 then
G is not amenable.

Suppose now that M —m = 1, so that A = (b,,) ¥ B = (by) = Z. 1t is
known ([H: Prop. 3.3]) that an HNN-extension (H;A, B, ¢), such that A and
B are both proper subgroups of the base group H, contains the free group
F,. Thus, if A # H # B, then G is non amenable.

Suppose that A = H (the case B = H is similar). Then H = (b,) = Z
and by = b%, for a suitable k € Z\ {0}. Replacing a by ¢ and b,, by s in
the above presentation for G, one gets the presentation

G = <t,s st = sk>

of type 3,. from the list (x*) and so G is amenable. []

1.3. COROLLARY. For amenable one-relator groups the isomorphism
problem is solvable.

Proof.  Suppose two one-relator groups which are amenable are given.
Then, in the algorithmical way described above, one gets two presentations
from the list (xx) and the procedure of recognition becomes obvious since

any two groups from the list with different presentations are in fact non-
isomorphic. [



342 T. G. CECCHERINI-SILBERSTEIN AND R. I. GRIGORCHUK
2. TWO-GENERATED ONE-RELATOR GROUPS

Let G be a one-relator group with m > 3 generators, or with torsion.
It is known that G has a subgroup of finite index Gy which surjects
homomorphically onto the free group F, of rank 2 (see [BP 1,2]). As
A«(F2) =3 one has A,(Gy) > 3, and it follows from Prop. 3.3 in [SW] that
Ae(G) > 1.

In the sequel of this section we study the growth of two-generated one-
relator groups.

As we remarked in the proof of Theorem 1.2 a group

G = {(a,b:R(a,b)=1),

with the relator R having zero a-exponent sum, is an HNN-extension
H* = (H;A,B,¢), where H = (by,...,by; R (by,...,by) = 1) is another
one-relator group and the associated subgroups A and B are the free subgroups
of H freely generated by {b,,...,by—1} and, respectively, {byt1,...,bu}.
We can distinguish 3 cases:

I) A and B are proper subgroups of H: A # H # B;

IT) only one associated subgroup is proper: A=H # B or A# H =B,

III) the associated subgroups coincide with the base group: A = H = B.
Accordingly we say that the group G 1s of type (I), (II) or (IIT).

2.1. LEMMA. Let G = (a,b:R(a,b) =1) where R has zero exponent
sum on a. Then

(i) G is of type (1) if and only if each of the symbols b,, and by occurs
in R at least two times. '

(ii) G is of type (Il) if and only if either by, or by occurs in R' exactly
once i.e., up to inversion and cyclic permutation of R’

, { byU, or
L bV,
where U = U(by,bpir,...,by—1) (respectively V. = V(buti,...,by))

involves b, (respectively by ).
(iii) G is of type (I1l) if and only if both b,, and by occur in R’ exactly
once, i.e., up to a cyclic permutation and inversion of R,

R = Wb, W)b!

where Wl' — Wi(bm—{—la - -;bM——l); I = 1,2
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Proof. (ii) Recall that an element x of a free group F is primitive if it
can be included in a basis for F. If the basis is {x,y,z,...}, then x is called
a primitive element associated with {y,z,...}.

Now A = H (respectively B = H) if and only if R’ is a primitive element
associated with {b,, byi1....,by—1} (respectively {bu41,...,bn}) in the
free group F(b,,, b1, .. .,by), and this holds if and only if R = U, bf/UZ
(respectively R’ = Vlb,:,'flVg ) where U; = U;(by,, byt - - ., by—1) (respectively
Vi = Vilbpit,...,by)), 1 = 1,2. Using cyclic permutations and/or inverse
operations if needed we get the conclusion.

(111) The same arguments used for (ii) can be applied.

(1) Follows immediately by exclusion from (ii) and (iii). ]

In the remaining part of this section it will be shown that all groups of
exponential growth of types (II) and (III) have uniformly exponential growth
(Proposition 2.7). In particular we will show that all amenable one-relator
groups of exponential growth have uniformly exponential growth (Proposition
2.6).

The proof of the following statement is trivial.

2.2. LEMMA. Let G be a finitely generated group, A = {aj,as.....a,}
and B = {by,by,....by,} two systems of generators. Let

L=max{|b],.|a|,:1<i<m, 1<j<n}.

g
Then
M(G)T < Ap(G) < M(G)-

A3(G)E < A(G) < Ag(G)E .

2.3. LEMMA. Let G be a finitely generated group such that there exists
a short exact sequence |

1 F G 7 — 1

where F is a non abelian free group. Then G has uniformly exponential
growth and )\.(G) > /3.

Proof. Let A be a finite set of generators of G. Set

C:{CEF: there exist aj,a» € AUA™! such thatc:[al,ag]},
B={beF: there existac AUA™! U{l} and ¢ € C s.t. b:aca_l},
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and let F¢ (respectively Fp) denote the subgroup of F generated by C (resp.
B). Then F¢ and Fp are free (as subgroups of a free group), F¢ < Fp and
Fc 1s non trivial. We are going to show that Fp is not abelian.

Assume that F¢ is abelian. Then there exists a simple element (i.e. not a
proper power) t € F' generating a cyclic subgroup T < F such that Fe < T.
If aca™' €T forall ac AUA™! and c € C, then aTu~! < T for all a € A.
Thus 7 is normal in G, and therefore in F. But this is impossible because
non abelian free groups do not have normal cyclic subgroups. It follows that
there exist a € AUA™! and ¢ € C such that aca~! does not commute with
c. This shows that Fp is not abelian and

Aug(G) > Ap(Fp) > 3.
As Mup(G) < Ag(G) by Lemma 2.2, this ends the proof. L]
24. LEMMA. Let G be a finitely generated group and suppose we have

an exact sequence
1 F G Z 1

where F is the union of an ascending chain of free groups of rank > 2. Then
G has uniformly exponential growth.

Proof. Suppose that FIU < F@O < F® < ... < ) < ptD < and
F =J2, F™. Then, with the same notations as in previous lemma, B C F"
for n sufficiently large, and the arguments as above can be applied. [

The following statement is a reformulation of [M: Thm. 2].

2.5. LEMMA. Consider an exact sequence of groups

1 A B C 1

where A is abelian and B is finitely generated. Suppose there exist a € A
and b € B such that the group generated by {b'ab™':i € Z} is not finitely
generated. Then b and ba generate a free semigroup.

2.6. PROPOSITION. The group T, = (t,s:tst' =s"), |n| > 2, has
uniformly exponential growth.

Proof. Consider, for n € Z,n # 0, the abelian group

ZH :{E;k,sez}.
n nt :
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The group I, is isomorphic to the semidirect product Z [ﬂ X ¢ L, where
¢ X+ nx.

Let A be a finite system of generators for I', and suppose that there exist
o, €A such that « € T, \ Z [ﬂ and f € Z [ﬂ Then it is easy to check
that the subgroup

(dBa; jel)<Z [ﬂ

is not finitely generated. Thus, according to the previous lemma, the set
{8, Ba} generates a free semigroup and setting A’ =AU {fa} one gets

M) > V(T > V2.

Suppose now that the generating system A = {ay,. .. ,ap, } 1s contained in
T,\Z[L]. Forall i,j=1,...,m one has [a;,a] €Z [1] and since T, is not

abelian there exist ig,jo such that a = [a;,, a;,] # 0. Setting A” = AU{«, aa; }
one obtains, as before,

AA(l_‘ll) 2 (AA//(I‘H)% Z 2% . ]

2.7. PROPOSITION. If G is a two-generated one-relator group of expo-
nential growth of type (Il) or (IIl) then it has uniformly exponential growth.

Proof. Consider G as an HNN-extension H* = (H;A, B, ¢) and denote
by N the kernel of the homomorphism H* — Z, h —— o,(h) (here o,(h)
denotes the sum of exponents in A~ of the stable letter #). Then one has the
short exact sequence

1 N G Z 1.

If G is of type (II) and H is free non abelian, then N = |2, "Ht ™" is
an increasing union of free groups of the same rank m > 2 and Lemma 2.4
can be applied. If H =2 Z then G = T',, where |n| equals the index of the
proper associated subgroup in H and sign(n) = sign(¢(1)), and the statement
follows from the previous proposition.

If G 1s of type (III) then N = H is free of finite rank > 2 and Lemma 2.3
can be applied. [
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3. UNIFORMLY EXPONENTIAL GROWTH
AND GROWTH OF GRADED ALGEBRAS

In this section we describe a method of estimating growth functions of a
group in terms of its graded Lie, and associative algebras defined via dimension
subgroups. We begin by recalling some concepts and notations.

As in [Gri] considerations were given with respect to a Galois field GF,,
here we modify the arguments for a field of characteristic 0, namely Q.

Let G be a group; denote by Q[G] the group algebra of G over Q,
and by A C Q[G] the augmentation ideal, that is the ideal generated by the
elements of the form g — 1, with g € G. Recall that the lower central series
of G 1s the sequence of subgroups {'yn(G)};”;l of G defined by v1(G) =G
and, for n > 2, 7,(G) = [G, 1,—1(G)].

The subgroup

G,={geG:g—1€A"}

is called the n-th dimension subgroup of G over Q and it has the following
characterisation due to Jennings [J] (see also [P: IV, Thm. 1.5] or [Pm: 11,
Thm. 1.10])

Gn=\1(G):={g€G:IkeN,g" €1(G}.

For any group G one defines as usual an associative graded algebra A(G)
and two graded Lie algebras L(G) and L(G) by

_A(G) —s é An/ArH—I
n=1

(o]

L(G) — @ [(Gn/Gn—l—l) Q7 Q}

L(G) = B [(m(G)/1m+1(G) ®z Q]

n=1

(see for instance [P], [Pm]). Quillen’s Theorem [Q] states that A(G) is the
universal enveloping algebra of L(G).
Assume now that G is finitely generated and set

a,(G) = dim(A" /A"y
b, (G) = rank(Gl’l/Gn-H)
cn(G) = rank(v,(G)/Yn+1(G))
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where, by rank, we mean the torsion free rank of the corresponding abelian
group. Then the following relations hold

n=0 n=1 n=1

The first equality follows easily from Quillen’s Theorem [Pm: Thm. 4.10,
Chapter 3] and the second one follows from the equality b,(G) = ¢,(G) as
proved in [Bel].

In [Be] it is also proved that

lim sup +/a,, = lim sup /¢, .

n—aec H—3oC

3.1. LEMMA. For any finite system of generators A of a group G the
following inequality holds :

(l,,(G) S A/',f(n): n 2 1 .

Proof. For x.y € G we have
p=1l=G=D+0-D+&— D= 1)
x =G -D=-G-DE"'-1)
so that
w—1l=@E—-1D+@(—-1) modA’
¥l =—x— 1) mod A?.
The ideal A" is spanned, over Q, by the elements of the form
)"1(X1 - 1)}"2(“’(2 - 1) e '}:N(xll - 1))’11—}—1 .
where x; € G and y; € Q[G], 1 <i<n, 1<j<n+1. Since
Y=Y kg => ks mod A, ky € Q
9€eG geG

a basis for the quotient space A"/A"*! can be chosen among the images
modulo A"*! of the elements of the form

(afl - 1)((1,‘2 - 1) T (Cl,'" - 1)7
k! g, where the

where a; € A. But (a; — 1)(a;, — (g, — 1) = dec g
summation extends over elements g of length at most n with respect to the
system of generators A. [
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3.2. COROLLARY. Let G be a finitely generated group and suppose
that the ranks of v,(G)/vn11(G) grow exponentially. Then G has uniformly
exponential growth and the estimate

A+(G) > lim sup \/rank(7,(G)/¥+1(G))

n—00

holds.

Recall that a group G is parafree of para-rank m if it is residually
nilpotent and the factors of consecutive groups in its lower central series
equal the corresponding ones of a free group of rank m. There are parafree
groups which are not isomorphic to free groups [B 2,3].

3.3. PROPOSITION. A finitely generated parafree group G of para-rank
m > 2 has uniformly exponential growth and "

A(G) > m.

Proof. 1t is known (see for instance [MKS: Thms. 5.11 (Witt’s Formulae)
and 5.12]) that for a free group F,, the rank of (v,(F,,)/Vnr1(Fn)) equals the
n-th coefficient of the Maclaurin power series of the function U(z) = 1/(1—mgz)
and the previous corollary can be applied. [

Given a parafree group G of para-rank m > 2 it would be interesting to
compare A.(G) with A\.(F,) =2m — 1.

3.4. PROBLEM. Is it true that, for a finitely generated para-free group
G of para-rank m > 2 which is not free, one has A\.(G) >2m —17?

In order to formulate the next statement we recall the following

3.5. DEFINITION. An element R € F is said to be primitive with respect
to the lower central series if, for all n > 2, it is not an n-th power
modulo v,r+1(F) where w(R) is the weight of R. (The latter is defined by

R € vuw(F) but R & vum+1(F).)
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3.6. THEOREM ([L 1,2]). Let R be an element of the free group F of
finite rank m which is primitive with respect 1o the lower central series.
Denote by k = w(R) its weight and by (R) the normal closure of R in F.
Let G=F/(R) and let L(F) and L(G) be the corresponding Lie algebras.
Let then r be the image of R in Ly(F), the k-th component of L(F) and
denote by I the ideal of L(F) generated by r.

Then I is the kernel of the canonical homomorphism of L(F) onto L(G),
Le.

L(G) = L(F)/I.

Moreover for all n > 1 the abelian group L,(G) is a torsion free group
whose rank is the n-th coefficient of the Maclaurin power series of the
function

U(z) =

1 —mz+ZF

4. MORE ON UNIFORMLY EXPONENTIAL GROWTH
OF ONE-RELATOR GROUPS

Any two-generated one-relator group G can be presented in the form
G = <a,b - dw(a. b) = 1> where &k € Z and w(a.b) belongs to the
commutator subgroup [F,F] of the free group F = F(a.b) freely generated
by a and b (this follows from Lemma 1.1). Since a and b constitute a basis
in F/v,(F) and [a.b] generates ¥,(F)/~3(F), one can also present G in the
form

G = <a,b - d'[a. b]]w(a,b) = 1>

where k.l € Z. and w(a.b) € vi(F).

In this section we shall see that, under suitable assumptions on k./ and
w(a. b), the corresponding group has uniformly exponential growth.

As an application of Labute’s Theorem we get the following:

4.1. PROPOSITION. Let G = (a.b:R(a.b)=1) be such that R is

primitive with respect to {ﬂ/n(F)}nOC: . and R € 3(F). Then G has uniformly
exponential growth.

Proof. If w(R) > 3, Theorem 3.6 shows that the corresponding function

U(z) has a pole zp with 0 < zp < 1. It follows that the coefficients c,(G)

grow exponentially. By Corollary 3.2, A\.(G) > 1. [J
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For Proposition 4.3 we need the following notations. Let £ be a positive
rational number such that £ # 1 and denote by Q¢ the smallest subgroup of
the additive group of the rationals, which contains 1 and is invariant under
multiplication by ¢ and ¢~!. In other words if & = 15) with p,g € Z and
ged(p,q) = 1 then Q¢ = Z[%, ;11]. Consider now the automorphism « of Qg
defined by a(x) = §x, x € Q¢. Let Z act on Q¢ by powers of «. Denote
by G¢ = Q¢ X4 Z the corresponding semidirect product. The group G¢ is
a two-generated group with system of generators {a, b} where @ =1 € Q¢
and the element b implements the automorphism a: b~ 'xb = a(x), x € Qe .

Let now d be a natural number > 2 and set B; = HZ 4. The group Z
acts on By by shifts. The corresponding semidirect product I'(d), also denoted
by Z, 1 Z, is called the wreath product of Z and Z,;. We shall consider I'(d)
as generated by a = (...,0,0,1,0,0,...) where 1 denotes a generator of Z,
(in the expression of & it appears at the O-th coordinate place), and by b,
the element which implements the shift.

We have short exact sequences

0 Q¢ — G¢ Z 0
0O— By —1d)—Z—0

so that G¢ and I'(d) are two-step solvable. Slightly modifying the proof of
Proposition 2.6 one gets

42. LEMMA. The groups G¢ and 1(d) have uniformly exponential
growth.

Our last class of two-generated one-relator groups of uniformly exponential
growth is determined in the following statement.

4.3. PROPOSITION. Let G = <a,b;ak[a,b]lw(a, b) = 1> with k.1 € 1. and
w(a,b) € F? where F® = [[F,F),[F,F]] denotes the second commutator
subgroup of the free group F = F(a,b) on a and b. Suppose that
(k, ) & {+(2, 1), £(1,1), £(1,0),+(0, 1)}. Then G has uniformly exponential
growth.

Proof. Set Gy = <a,b;ak[a,b]lw(a,b)>, Set also
ék,l - <Cl7 b: ak[a, b]l'l.U(Cl, b)/ F(2)> e <a7 b, ak[a’ b]l7 F(2)>

which is a 2-step solvable quotient group of Gy ;. We shall show that (—;kvl can
be mapped homomorphically onto either G¢ or I'(d) for a suitable positive
rational number £ # 1 or natural number d > 2.
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Suppose first that k # 1.2/ and Ik # 0. These assumptions guarantee that
€= ’#| # 0.1. Then the map a —— (51)59”(#)]) —— b from F onto Gg¢
factorizes through G, ;. Indeed if we suppose, for instance, that # > (0, then
the image of a*[a.b]’ is the number k+I(—1+ &) € Q¢ which is zero. Thus
Gy, maps onto Ge.

Suppose now that ged(k.l) = d or (k.I) € {£(d.0).£(0.4)} for some
d > 2. Then, the same arguments as before show that Gj, can be mapped
onto I'(d) via the map a +— a.b+—— b.

Finally observe that Gg is the free two-generated two-step solvable group
F/F® and thus maps homomorphically onto I'(d) for any d > 2.

The proof follows from Lemma 4.2. [

Remark that the two-generated one-relator groups that are not covered by
our statements have their relator that can be reduced to one of the form buw,
[a.b]w or ba~'baw, where w = w(a.b) € FP.

Let us finish the paper by the following observation.

In [GrLP] it was conjectured that if G is a group with m generators and
p relations, then

AN(G) > 2m—p) — 1.

For one-relator groups there is one case when Gromov’s conjecture holds
true.

4.4. PROPOSITION. Let G = (aj.as..... am . R(ay.as. . ... am) = 1), with
m > 2, be a one-relator group such that the relator R does not belong to the
commutator subgroup F' of the free group F of rank m freelv generated by
ay.ar.....ay,. Then \.(G) > 2m — 3.

Proof. We may assume that G is torsion-free. Indeed if U.V € F
are such U = V¥ for some k € Z, then U € F' iff V ¢ F. If

the relator R is a proper power, say R = W5, then G maps onto
G = (ay.as.....a, Wa.as..... a,) =1). which is torsion-free, and
A(G) = A (Gy).

Under our assumptions on R, H{(G.Q) = Z"~! and the second rational

homology group H>(G.Q) vanishes.

In [S] it is proven that if H>(G.k) = 0, where k is a field, then any subset
{xj} € G, whose image in H{(G.K) is linearly independent, freely generates
a free group.

Let X = {x;.x2.....x,} be a finite system of generators for G. Then
X={x...... Y, }, where ¥; denotes the image of x; in H,(G. Q). generates
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H(G,Q). We can find an independent subsystem {)‘cil, oo } in Hi(G,Q)
such that its pre-image {x;,...,x; } freely generates a free group. Therefore
(G >2m—-1)—1=2m-3. [J

It seems to us that for a one-relator group G of rank m > 3 the inequality
A(G) > 2m — 3 cannot be deduced directly from Magnus’ Theorem as it is
claimed in [GrLP].
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