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We have shown that (7, a); = 1, and we get the desired result if (a /T =1.
This is easily seen. Let a = a’2* where o’ is odd. Then

a a\ /2\* 7T / k 1 _
(- (- G-t
T/, ™/ ™ ! a l a [

where we have used the reciprocity laws (5) and (6) in the second equality
and Theorem 5(¢) in the third. [

8. THE SECOND PROOF

This second proof is in many ways preferable to the first. It 1s much
less dependent upon machinery (i.e., knowledge of the conductors), and it is
specific to the case of cyclotomic polynomials.

Second proof of Theorem 1. We keep the notation of the first proof. The
beginning of the proof runs along the lines of the first. Via the reciprocity
laws, we therefore conclude that

<’a—> — (ﬂ-;a)l .
T/

As in the proof of Theorem 4, it suffices to show that (1 — gx(;,a); = 1 for
any multiple x of a and a primitive /th root of unity (.
By Theorem 6(f), we have

(1 — gx¢,a) = (1 — gx(i,qgxa™" () ' = (1 — ao, )y

where we have set o = gxa™'(;.

Now note that if we are given a power series f; € Z,[[X]] with £(0) =,

and a symbol (1 — o'fi(a), ®);, we can use multiplicativity on the left to
manipulate the symbol into

(1 - a’ﬁ(a)

Ty (L= d @) = (1 =o' fii@), 0 (1~ o @),

where fi.| is another power series over Z,. Since « has positive valuation,
large enough powers of it will be congruent to 0 modulo the conductor of o .
Therefore the symbol (1 — o/fi(e), a); will be 1 for large i. Taking f; = a,
we see recursively that (1 — ac, ), can be expressed as a finite product of
powers of symbols of the form (1 — of, o), with i > 1.
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Let us fix an i and set i = i’¢" with i not divisible by ¢. Then /’ is
invertible mod /, and so by multiplicativity of the norm residue symbol we
have |

; ./ r e —1
(1—a,a)=(1— @), a) .

Now note that § = o' has the same form as «. That is, ( is an integer
multiple of ¢ times a primitive nth root of unity. It will therefore suffice to
show that (1 — oﬂr,a)l =1 forall »r > 0. If r =0, then Theorem 6(f) tells
us already that this symbol is 1. _

Now assume 1 <r <s (so s > 2). Note that

;
L= (gxQ)® =] ] = axiC.
=1

J=

So we need only show that (1 — gx(;€,gx(;); = 1 for every ¢*~!th root of
unity &. In this case,

(1 — gxGi€, gy = (1 — qx(i€, €))7

by Theorem 6(f). As in (9), we can apply reciprocity law (5) and equation
(4) to obtain

(10) (1 = gxGig, &)y = EWrtimaxen=b/L,
Here we have used the fact that (; is a Galois conjugate of (;¢. Note that
N(1 = gx() = @y(gx) = 1 mod g7 .

As qs_1 >2s—1 for s > 2 and g > 3, we conclude that the symbol in (10)
1s 1.
Finally, assume that r > s. We then have

(1 = (gxC)? , gx¢)r = (1 — (g0 , )1 — (g0, &y -

As both entries are rational, we have that (1 — (qx)qr,qx)l is an [th root of
unity which, by Theorem 6(h), is invarriant under the action of G, /Q, and
so must be 1. Furthermore, (1 — (gx)? ,(;); can be evaluated as in (10). Since
[K:Q]l=¢"!(g— 1), we have

NK(l _ (qx)qr) _ (1 . (qx)qr)qs—l(q_l) =1 mod qqr_|_s__1 '

Now we need only note that ¢" +s —1 > 25 for all r > s to finish the
proof. [
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This method is easily used to deal with the case of g =2, as most of the
proof carries over. We leave the proof to the reader. Extending this method,
the author has been able to compute the conductors which were used in the
first proof of the theorems (for all g) [Sh2].
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