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6. WHAT ABOUT ¢ ?

We pose the question: is g necessarily a g’th power modulo p in
Theorem 22 A numerical test will quickly show that this is most certainly
not always so. However, Theorem 3 tells us that the answer is in fact “yes”
in most cases.

Proof of Theorem 3. Let K, L, m be as in the proof of Theorem 2 and
assume s > 0. Note first that (g/m); = (m, ¢); by reciprocity law (6). We will
evaluate the latter symbol.

Viewing @, (X, Y) as a polynomial over K, we have that

™= NL/K()’ - qun) — CDzz/l(y7 qxg/)a

where (; in this equation is given by C,"/ = ,'Z/ ' We now state the following

generating formula for homogeneous cyclotomic polynomials:

xm . ym

[ ®uX,Y)
d|m
O<c|l<m

(8) (I),,,(X, Y) -

Applying this formula recursively, we see that 7 is expressible as a product of
numbers of the form y" — (¢gx(;)" and reciprocals of such numbers, where r is
some positive divisor of n/l. To show that (7, ¢); = 1, it is by bimultiplicativity
enough to show that (y" — (gx(;)",q); = 1 for all such r. And since n/l is
relatively prime to ¢, it will clearly suffice to show that (y —gx(;,q); = 1 for
any choice of (; and integers x and y with y relatively prime to g.

We have

0 —gxC @1 = O, (1 — gy~ ¢, q)r -

The first symbol (y, g); is fixed under the action of the Galois group Gq,n/Q,
by Theorem 6(h) since y,q € Q,. As an [th root of unity with [ odd, it must
therefore be 1. |

By Theorem 6(f), (1 — gxy~'(;, gxy~'¢); = 1. But by bimultiplicativity,
this means that

=gy "G =1 — gy Gy D7 — gy ™1, )7t

Corollary 8 yields that 1 —gxy~!¢; =1 mod f;(xy~!), and so the first symbol
on the right is 1. The second symbol can be evaluated by turning it back
into a power residue symbol and applying (4). Since (; is a unit in the ring
of integers of K, the reciprocity law (5) yields
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9) (1 —gxy™ ¢, O = ( c — > = (Mr=aoc) DIt
1 —gxy="¢/,

Thus (1 — gxy~'(, ¢); will equal 1 if and only if Ng(l — qxy~'¢) = 1
mod ¢%. In fact,

g—1
= _ i.‘:—l o g—1
Ne(l—qry™'¢) = (gry™) =1 modg? .
=0

It is easily seen that ¢*~' > 2s exactly when stated in the theorem. []

One remark on the case s = 1. If in fact we take n = ¢, then since
O,X)=1+X+--+ X! we have that p = 1 mod ¢* if and only if g
divides x. Then g is a gth power modulo p if and only if x is divisible by
g, in stark contrast to the above theorem.

7. 'THE EVEN CASE

We now turn to the case of ¢ = 2. Given a positive integer s, let us set |
[ = 2°. We refrain from proving the theorem for the more general case of
homogeneous polynomials, though it holds under such a generalization.

Any « € Qi may be written uniquely as « = £2°(—3)¢ where £ = +1,
beZ, and ¢ € Z,. Note that b = v,(«), where v, is the 2-adic valuation.
Denote by f;(c) the conductor of the norm residue character (-, a); in Q2(()).
The conductors in this case have been worked out by Despina Prapavessi in
[P]. We use a corrected version of her theorem [Shl].

THEOREM 9 (Prapavessi). Let o € Q3 and write o = £2°(—3)° as above.
Let w = min {vy(b), vo(c) + 2}. Then if £ =1,

((8) if w=0,
4) ifw=1ands > 2,
(Mow—1) if 2 <w<s and w=vy(c) + 2,
i) =1 Awhgwt1) f2<w<s—1and w < vy(c)+ 1,
(Ags—1) f2<w=s—1and w = vy(c)+ 1,
L (D) otherwise.
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