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6. What about q

We pose the question: is q necessarily a qsth power modulo p in

Theorem 2 A numerical test will quickly show that this is most certainly

not always so. However, Theorem 3 tells us that the answer is in fact "yes"

in most cases.

Proof of Theorem 3. Let K, L, it be as in the proof of Theorem 2 and

assume s > 0. Note first that (q/nf {ir,q)i by reciprocity law (6). We will
evaluate the latter symbol.

Viewing On/i(X. Y) as a polynomial over K, we have that

TT *= NL/kö7 - <E>«//Cy, ^C/) >

where 0 in this equation is given by • We now state the following
generating formula for homogeneous cyclotomic polynomials :

y111

(8) 3>m(V Y)
n w,y)
d\m

0<d<m

Applying this formula recursively, we see that tt is expressible as a product of
numbers of the form /' — (qxQY and reciprocals of such numbers, where r is

some positive divisor of «//.To show that (tt, q)i — 1, it is by bimultiplicativity
enough to show that (/" — (qxQ)'\q)i 1 for all such r. And since n/l is

relatively prime to q, it will clearly suffice to show that (y — qxQ, q)i 1 for
any choice of Q and integers x and y with y relatively prime to q.

We have

Cy - qxQ, q)i (y,g)-qxy~l(„

The first symbol (y, q)j is fixed under the action of the Galois group
by Theorem 6(h) since y,q G Q^. As an Zth root of unity with I odd, it must
therefore be 1.

By Theorem 6(f), (1 - qxy~lQ,qxy~lQ)i1. But by bimultiplicativity,
this means that

(1 - qxy-l(hq),(1 - qxy~lQ,xy~lyp (1 - qxy~lÇh O),-'

Corollary 8 yields that 1 -qxy~\,:1 mod f/(xy-1), and so the first symbol
on the right is 1. The second symbol can be evaluated by turning it back
into a power residue symbol and applying (4). Since Q is a unit in the ring
of integers of K, the reciprocity law (5) yields
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(9) (l-CT-'0,0)i=f, ° „)
Thus (1 — qxy~lQ>0i will equal 1 if and only if Afc(l — gxy_1(/) 1

mod gZs'. In fact,

q~x

Nk( 1 - qxy~1Q ^fqxy~x)iqS
'

1 mod ^ '

/=o

It is easily seen that qs~{ > 2s exactly when stated in the theorem.

One remark on the case s 1. If in fact we take n — q, then since

Oq(X) 1 + X 4-• • + Xq~l we have that p 1 mod q2 if and only if q
divides x. Then q is a qth power modulo p if and only if x is divisible by

q, in stark contrast to the above theorem.

7. The even case

We now turn to the case of q 2. Given a positive integer .9, let us set

/ =:2s. We refrain from proving the theorem for the more general case of
homogeneous polynomials, though it holds under such a generalization.

Any a e Q2 may be written uniquely as a £2b(—3)c where £ ±1,
b G Z, and c G Z2. Note that b — V2(ot), where V2 is the 2-adic valuation.

Denote by f/(a) the conductor of the norm residue character •, a)i in Q2((/) •

The conductors in this case have been worked out by Despina Prapavessi in

[P]. We use a corrected version of her theorem [Shi].

THEOREM 9 (Prapavessi). Let a G QJ and write a ^2b(—3)c as above.

Let w min v2(c) + 2}. Then if Ç 1,

if w ~ 0,

if w — 1 and s > 2,

if 2 < w < s and w v2(c) + 2,

if 2 < w < s — 1 a/îJ w < v2(c) + 1,

if 2 < w s — 1 u; - i;2(c) + 1,

otherwise.

f/(a)

(8)

(4)

(Ä2w- 1

(A2w A2W+j

(A2,->)

(1)


	6. WHAT ABOUT q?

