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difficult and does not generalize well to higher powers. On the other hand,
the simple form of our example makes it possible to guess a generalization.
For instance, we may check that a is a quintic residue of primes of the form
625x4 + 125x3 + 25x2 + 5x + 1, where x is a multiple of a. At this point,
the key observation is that the polynomials we are describing come from
cyclotomic polynomials. Through this observation and numerical tests, we are

led to conjecture the theorems proven in this paper.
As one might expect, the proofs of our conjectures use reciprocity laws

which arose as generalizations of quadratic reciprocity. For arbitrary nth

powers, these laws are quite deep results of class field theory. Due to the

sharp contrast between the elementary nature of the statements of the theorems

and the sophisticated tools needed in their proofs, we have provided the

necessary background concerning reciprocity laws in Section 3. Through the

reciprocity laws, the theorems become reduced to questions about the norm
residue symbol of local class field theory. This symbol is an extremely useful

tool which provides much insight into our result.

Those acquainted with classical reciprocity laws may notice that the known
conductors of the norm residue symbol which we describe below provide a

generalization of the very beautiful reciprocity law of Eisenstein [IR, Ch. 14].

This leads us to our first proof of the main theorem. We also provide a

second proof which, although somewhat less general, completely avoids the

extra machinery of conductors.

This paper is intended both for non-specialists who would like to learn

something about class field theory and reciprocity laws and for specialists who

want to see a fun application of what they know.

2. Statement of results

Given a positive integer ra, we denote the rath cyclotomic polynomial over
the rationals by Om(X). That is, we define Om(X) to be the monic irreducible

polynomial which has as its roots the primitive rath roots of unity in the field
of complex numbers.

THEOREM 1. Let q be an odd prime and n a positive integer Let s be

the largest integer such that qs divides n. Let p On(qx) for an integer x.

If p is a prime number then every integer dividing x is a qs th power residue

modulo p.
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For a prime p congruent to 1 modulo ra, an integer a relatively prime

to p is said to be an rath power residue modulo p if cfp~X)!m 1 mod p.
Equivalently, a is an rath power (residue) modulo p if a zm mod p for

some integer z which is not divisible by p.
The following two formulas show how to generate cyclotomic polynomials ;

here, is a primitive rath root of unity :

ompo= n (x-o
(d,m)= 1

0 <d<m

xm -1
n w)'
d\m

0<cl<m

We give two proofs of Theorem 1. The first serves as an example of the

computation of power residues through knowledge of norm residue symbols
and their conductors and is given in Section 4. The second proof does not

require knowledge of the conductors and is given in Section 8. (It is also

several years more recent than the first.)
The theorems which follow illustrate three different natural extensions of

Theorem 1. We shall be content with these to convey the power of the tools

we employ and will not seek to push generalizations to their extremes.

For a positive integer ra, let Om(X, Y) denote the rath homogeneous
cyclotomic polynomial, which is simply the rath cyclotomic polynomial
homogenized. That is, it can be defined as follows :

(1) <bm(X, V) n (X-YÇ
(d,m)= 1

These polynomials have the property that for ra > 1,

(2) ®m(x,y) om(y,X).

The proof of the following can be found in Section 5.

THEOREM 2. Let q be an odd prime and n a positive integer. Let s be
the largest integer such that qs divides n. Let p Qn(qx,y) for integers x
and y. If p is a prime number, then every integer dividing x is a qsth power
residue modulo p.

In Theorem 2, we know q divides qx, yet q is not necessarily a <f th
power modulo p. Can we find cases in which q is necessarily such a power
We give an answer here, and for the proof, see Section 6.
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THEOREM 3. Let p be as in Theorem 2. Then if q > 3 and s > 2, or
q 3 and s > 3, we /rave r/ra/1 g /a a qsth power modulo p.

We will also derive an analogue of Theorem 1 for the always tricky case

of q 2. The proof is found in Section 7 and requires the use of several

valuable properties of norm residue symbols.

THEOREM 4. Let n be a positive multiple of 4, and let s be the largest
integer such that 2s divides n. Let p On(2x) if s > 2, and let p 0„(4a)
if s 2. If p is a prime number, then every integer dividing x is a 2sth

power modulo p.

We shall use the following notation throughout the remainder of the paper.
Lower case Roman letters will denote rational integers unless otherwise noted.

In particular, we shall use m as a generic positive integer. Furthermore, (m will
denote a primitive rath root of unity in an appropriate cyclotomic extension

of the rationals Q, and for such a choice of Çm we set Xm 1 — (m. For a

Galois extension K of a field F, we will denote its Galois group by GK/F
and its norm by NK/F. If the ground field F is Q, it shall be left out of the

notation. For example, the Galois group of K over Q is denoted by GF-

3. Background

We now recall the formalism of the power residue and norm residue

symbols and list the general reciprocity laws that relate them. This section is

designed for those not yet familiar with this material and may be skipped by
others. Most of the bibliographical references give a more thorough treatment
of one or more aspects of the material we present below. This section requires

only knowledge of algebraic concepts such as the integral closure and Galois

theory, but it will help to have some knowledge of local and global fields.

By an algebraic number field F we mean a finite extension of the rationals.

Its ring of integers A is the integral closure of Z in F. The set of fractional
ideals of F is the set of finitely generated non-zero A-submodules of F.
Any fractional ideal can be uniquely factored into integral powers of a finite
number of prime ideals, and hence the fractional ideals form a group by

taking formal products of the prime ideals. A non-zero element a of F will
be treated as a fractional ideal by considering the fractional ideal aA that it
generates.
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