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ON CYCLOTOMIC POLYNOMIALS,

POWER RESIDUES, AND RECIPROCITY LAWS

by Romyar T. Sharifi

Abstract. For a positive integer n, let 0„(X) be the nth cyclotomic polynomial
over the rationals, i.e., the monic irreducible polynomial which has as its roots the

primitive nth roots of unity. Fix an odd prime q and let s be the largest integer such

that qs divides n. If p is a prime of the form p 9>n(qx) for some integer x, then all

integers dividing x are qs\h powers modulo p. An analogous statement holds for the

case q 2. The proofs make use of norm residue symbols in cyclotomic extensions

of the q-adic rationals.

1. Introduction

This paper is concerned with an interesting property of power residues

of primes which appear as values of a cyclotomic polynomial. To gain an

understanding of power residues, we could start by looking for patterns in

a list of primes and the index of various integers modulo these primes. The

case of quadratic residues is well-known, dating back to Euler, Legendre,
and Gauss. We might notice, for instance, that a number a is a quadratic
residue modulo primes of the form 4x + 1, where x is a multiple of a. In

general, those primes which have a given number a as a quadratic residue are

completely determinable using the law of quadratic reciprocity. Indeed, this

problem was one of the main motivations for the formulation of this law.

As an attempt to extend the quadratic case, we can look for a polynomial
that produces primes which have a as a cubic residue. In doing so, we

may discover that a is a cubic residue of primes of the form 9x2 + 3x T~ I,
where x is a multiple of a. A complete classification of cubic residues is
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difficult and does not generalize well to higher powers. On the other hand,
the simple form of our example makes it possible to guess a generalization.
For instance, we may check that a is a quintic residue of primes of the form
625x4 + 125x3 + 25x2 + 5x + 1, where x is a multiple of a. At this point,
the key observation is that the polynomials we are describing come from
cyclotomic polynomials. Through this observation and numerical tests, we are

led to conjecture the theorems proven in this paper.
As one might expect, the proofs of our conjectures use reciprocity laws

which arose as generalizations of quadratic reciprocity. For arbitrary nth

powers, these laws are quite deep results of class field theory. Due to the

sharp contrast between the elementary nature of the statements of the theorems

and the sophisticated tools needed in their proofs, we have provided the

necessary background concerning reciprocity laws in Section 3. Through the

reciprocity laws, the theorems become reduced to questions about the norm
residue symbol of local class field theory. This symbol is an extremely useful

tool which provides much insight into our result.

Those acquainted with classical reciprocity laws may notice that the known
conductors of the norm residue symbol which we describe below provide a

generalization of the very beautiful reciprocity law of Eisenstein [IR, Ch. 14].

This leads us to our first proof of the main theorem. We also provide a

second proof which, although somewhat less general, completely avoids the

extra machinery of conductors.

This paper is intended both for non-specialists who would like to learn

something about class field theory and reciprocity laws and for specialists who

want to see a fun application of what they know.

2. Statement of results

Given a positive integer ra, we denote the rath cyclotomic polynomial over
the rationals by Om(X). That is, we define Om(X) to be the monic irreducible

polynomial which has as its roots the primitive rath roots of unity in the field
of complex numbers.

THEOREM 1. Let q be an odd prime and n a positive integer Let s be

the largest integer such that qs divides n. Let p On(qx) for an integer x.

If p is a prime number then every integer dividing x is a qs th power residue

modulo p.
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