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ON CYCLOTOMIC POLYNOMIALS,

POWER RESIDUES, AND RECIPROCITY LAWS

by Romyar T. Sharifi

Abstract. For a positive integer n, let 0„(X) be the nth cyclotomic polynomial
over the rationals, i.e., the monic irreducible polynomial which has as its roots the

primitive nth roots of unity. Fix an odd prime q and let s be the largest integer such

that qs divides n. If p is a prime of the form p 9>n(qx) for some integer x, then all

integers dividing x are qs\h powers modulo p. An analogous statement holds for the

case q 2. The proofs make use of norm residue symbols in cyclotomic extensions

of the q-adic rationals.

1. Introduction

This paper is concerned with an interesting property of power residues

of primes which appear as values of a cyclotomic polynomial. To gain an

understanding of power residues, we could start by looking for patterns in

a list of primes and the index of various integers modulo these primes. The

case of quadratic residues is well-known, dating back to Euler, Legendre,
and Gauss. We might notice, for instance, that a number a is a quadratic
residue modulo primes of the form 4x + 1, where x is a multiple of a. In

general, those primes which have a given number a as a quadratic residue are

completely determinable using the law of quadratic reciprocity. Indeed, this

problem was one of the main motivations for the formulation of this law.

As an attempt to extend the quadratic case, we can look for a polynomial
that produces primes which have a as a cubic residue. In doing so, we

may discover that a is a cubic residue of primes of the form 9x2 + 3x T~ I,
where x is a multiple of a. A complete classification of cubic residues is
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difficult and does not generalize well to higher powers. On the other hand,
the simple form of our example makes it possible to guess a generalization.
For instance, we may check that a is a quintic residue of primes of the form
625x4 + 125x3 + 25x2 + 5x + 1, where x is a multiple of a. At this point,
the key observation is that the polynomials we are describing come from
cyclotomic polynomials. Through this observation and numerical tests, we are

led to conjecture the theorems proven in this paper.
As one might expect, the proofs of our conjectures use reciprocity laws

which arose as generalizations of quadratic reciprocity. For arbitrary nth

powers, these laws are quite deep results of class field theory. Due to the

sharp contrast between the elementary nature of the statements of the theorems

and the sophisticated tools needed in their proofs, we have provided the

necessary background concerning reciprocity laws in Section 3. Through the

reciprocity laws, the theorems become reduced to questions about the norm
residue symbol of local class field theory. This symbol is an extremely useful

tool which provides much insight into our result.

Those acquainted with classical reciprocity laws may notice that the known
conductors of the norm residue symbol which we describe below provide a

generalization of the very beautiful reciprocity law of Eisenstein [IR, Ch. 14].

This leads us to our first proof of the main theorem. We also provide a

second proof which, although somewhat less general, completely avoids the

extra machinery of conductors.

This paper is intended both for non-specialists who would like to learn

something about class field theory and reciprocity laws and for specialists who

want to see a fun application of what they know.

2. Statement of results

Given a positive integer ra, we denote the rath cyclotomic polynomial over
the rationals by Om(X). That is, we define Om(X) to be the monic irreducible

polynomial which has as its roots the primitive rath roots of unity in the field
of complex numbers.

THEOREM 1. Let q be an odd prime and n a positive integer Let s be

the largest integer such that qs divides n. Let p On(qx) for an integer x.

If p is a prime number then every integer dividing x is a qs th power residue

modulo p.
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For a prime p congruent to 1 modulo ra, an integer a relatively prime

to p is said to be an rath power residue modulo p if cfp~X)!m 1 mod p.
Equivalently, a is an rath power (residue) modulo p if a zm mod p for

some integer z which is not divisible by p.
The following two formulas show how to generate cyclotomic polynomials ;

here, is a primitive rath root of unity :

ompo= n (x-o
(d,m)= 1

0 <d<m

xm -1
n w)'
d\m

0<cl<m

We give two proofs of Theorem 1. The first serves as an example of the

computation of power residues through knowledge of norm residue symbols
and their conductors and is given in Section 4. The second proof does not

require knowledge of the conductors and is given in Section 8. (It is also

several years more recent than the first.)
The theorems which follow illustrate three different natural extensions of

Theorem 1. We shall be content with these to convey the power of the tools

we employ and will not seek to push generalizations to their extremes.

For a positive integer ra, let Om(X, Y) denote the rath homogeneous
cyclotomic polynomial, which is simply the rath cyclotomic polynomial
homogenized. That is, it can be defined as follows :

(1) <bm(X, V) n (X-YÇ
(d,m)= 1

These polynomials have the property that for ra > 1,

(2) ®m(x,y) om(y,X).

The proof of the following can be found in Section 5.

THEOREM 2. Let q be an odd prime and n a positive integer. Let s be
the largest integer such that qs divides n. Let p Qn(qx,y) for integers x
and y. If p is a prime number, then every integer dividing x is a qsth power
residue modulo p.

In Theorem 2, we know q divides qx, yet q is not necessarily a <f th
power modulo p. Can we find cases in which q is necessarily such a power
We give an answer here, and for the proof, see Section 6.
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THEOREM 3. Let p be as in Theorem 2. Then if q > 3 and s > 2, or
q 3 and s > 3, we /rave r/ra/1 g /a a qsth power modulo p.

We will also derive an analogue of Theorem 1 for the always tricky case

of q 2. The proof is found in Section 7 and requires the use of several

valuable properties of norm residue symbols.

THEOREM 4. Let n be a positive multiple of 4, and let s be the largest
integer such that 2s divides n. Let p On(2x) if s > 2, and let p 0„(4a)
if s 2. If p is a prime number, then every integer dividing x is a 2sth

power modulo p.

We shall use the following notation throughout the remainder of the paper.
Lower case Roman letters will denote rational integers unless otherwise noted.

In particular, we shall use m as a generic positive integer. Furthermore, (m will
denote a primitive rath root of unity in an appropriate cyclotomic extension

of the rationals Q, and for such a choice of Çm we set Xm 1 — (m. For a

Galois extension K of a field F, we will denote its Galois group by GK/F
and its norm by NK/F. If the ground field F is Q, it shall be left out of the

notation. For example, the Galois group of K over Q is denoted by GF-

3. Background

We now recall the formalism of the power residue and norm residue

symbols and list the general reciprocity laws that relate them. This section is

designed for those not yet familiar with this material and may be skipped by
others. Most of the bibliographical references give a more thorough treatment
of one or more aspects of the material we present below. This section requires

only knowledge of algebraic concepts such as the integral closure and Galois

theory, but it will help to have some knowledge of local and global fields.

By an algebraic number field F we mean a finite extension of the rationals.

Its ring of integers A is the integral closure of Z in F. The set of fractional
ideals of F is the set of finitely generated non-zero A-submodules of F.
Any fractional ideal can be uniquely factored into integral powers of a finite
number of prime ideals, and hence the fractional ideals form a group by

taking formal products of the prime ideals. A non-zero element a of F will
be treated as a fractional ideal by considering the fractional ideal aA that it
generates.
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The additive p -adic valuation vv coiTesponding to the prime ideal p returns

the power of this prime ideal occurring in a factorization of the fractional
ideal. Two fractional ideals a and b of A are said to be relatively prime
if for every prime ideal p such that iP(a) f 0 we have t!P(b) 0. For

ot\, • • ar G F* denote by /(a i. • • • ar) the group of fractional ideals of A

which are relatively prime to a\, • • • ar.
Let F be an algebraic number field containing the set pm of /?? th roots

of unity. Then for a G F* and 6 G I(nu a), the mth power residue symbol
takes on a value in pm and is denoted

(a/b),„.F or (Y)
\bJ,n.F

When usage is clear, we will leave F out of the notation.
For an ideal b of A, we let Nb [A : b]. As a result, Nb [Z : NKb]

and NKb (Nb). For a prime ideal p and a G F* relatively prime to p we
have the following formula:

(3) • (L) e q<"< mod p.

We also have:

Theorem 5. The power residue symbol • / • )m has the following
properties :

(a) (aa'/b)m — (a/b)m (a'/b)m for a. a' G F~ and b G I(m. a. a') ;
(b) (a/bb')m (a/b)m (a/b')m for aGf and b.b' G I(nu a) ;

(c) (a/b)m (o*Jb)m if a a7 mod 6 for a. a' G F* and b G I(m.a),
b an ideal;

(d) a(a/b)m (era/ob),n for a G F*, b G I(nu a) and o an automorphism
of F.

Finally, when a is an mth root of unity, the power residue symbol can
be evaluated by using (3) and Theorem 5(b). For f G pm and b G I(m), one
sees that

(4) (lJ ç(iVb—i)//«

By a local field we mean R, C or a finite extension of Qp, the p-adic
numbers, for some prime number p. In the latter case, the field is called
non-archimedean and in the others, archimedean. Archimedean local fields



324 R.T. SHARIFI

arise through completion of an algebraic number field with respect to an

embedding of it in R or C. A non-archimedean local field over Qp arises

through completion of an algebraic number field F with respect to a metric
determined by the additive valuation associated to a prime ideal p of A which
lies over the prime ideal p of Z.

Both the absolute values defined by archimedean embeddings and the prime
ideals of the ring of integers of the number field F are referred to as primes of
F. Let p be a prime of F, and take the completion of F as described above.

We say that the resulting local field Fp is the completion of F at the prime
p. It is a topological field under the topology induced by the completion. In
the non-archimedean case, the subring of Fp which is the completion of the

ring of integers of F is a local ring called the valuation ring Opp of Fp.
Let K be a local field which contains the mth roots of unity. Then

'
% )m,K • K X K > jlm

will denote the mth norm residue symbol of a field K with multiplicative

group F*. We use the definition of the norm residue symbol coinciding with
that of [CF], [H], and [Se], which is the inverse of the symbol defined in

[AT], [FV], [Iy], and [Ne]. As with the power residue symbol, K will usually
be left out of the notation.

The norm residue symbol has many important and useful properties. We

list several of them in the following theorem.

THEOREM 6. The norm residue symbol •, • )m^ has the following
properties :

(a) •, • )m is bimultiplicative ;

(b) a,ß),„ (ß, a),;1 fora,ß eK* ;

(c) (a, ß)m — 1 for a, ß G F* if and only if ß is the norm of an element

of K(y/a);
(d) (a,ß)m>L (NL/K(a),ß)m,Kfora G L*, ß G K*, where L is a finite

separable extension of K ;

(e) (a, ß)nmn (a,ß)mfor a,ß GK*ifÇ K ;

(f) (a, 1 - a)m1 for a G K*,a f 1 ;

(g) (a, —ex)m1 for a GK*;
(h) <j(a, ß)m(era, aß )mfor a, ß GK*anda a continuous automorphism

of K.
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Now assume that K is non-archimedean. For ß G K*, the conductor of the

norm residue symbol •, ß)m# is an ideal f f(ß) of the valuation ring Ok
and hence a power of the unique maximal ideal of this ring. The conductor is

the largest ideal having the property that if a G (0% is such that a 1 mod f,
then (a, ß)K — 1.

Again let F be an algebraic number field containing the m th roots of
unity. Let oo denote the formal product of the real primes (embeddings) of
the field F, and let Fp denote the completion of F at a prime p. Then we
have the following law of reciprocity for a, ß G F* relatively prime to each

other and to m :

<5) (fi
ßJm,F\a/m,F

p| moo

where p | moo indicates that p appears in the decomposition of moo into a

product of primes. (That is, the product is taken over all prime ideals dividing
m and all real primes.) Furthermore, if 7 G F* is such that p divides m for
all prime ideals p satisfying 27(7) 7^ 0 and ß G F* is again relatively prime
to 772, we have

(6) u =n^'T>
'"F p|moo

4. The odd case

For an odd prime q and a positive integer s-, we now set / If
a e Q*, then a may be written uniquely as a £qb{\ - q)c where
£ nq-I,bGZ, and cGZ?. Note that b where is
the g-adic valuation. Denote by f /(a)theconductor of the norm residue
character o)/ for the /th cyclotomic field Q?(C/) over the adic
rational Q(/. Robert Coleman and William McCallum have computed these
conductors for all a e QJ in [CM], We state the result here, though
we shall use only its corollary. Recall that Am 1 - for all positive
integers m.
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THEOREM 7 (Coleman and McCallum). Let a £ Q*, and write a
ÇqbQ — q)c as above. Let w min {vq(b), vq(c) +1}. Then

f {\qw\qW+\) if w < s and vq(b — qc) > w, else :

fi{a)
{q\2Cj) if w 0,

(A^,„) if1 < w <s,or w s vq(c) + 1.

(1) otherwise.

We have the following useful corollary.

COROLLARY 8. Let a £ Q*. Then {qX2Cj) ç fi(a). If vq(a) 0, then

(A*)Cf/(a).

Proof. Since Çq is an integral power of Q»-, we have that XqW 1 — (qW

divides XCj 1 — Çq. The corollary is immediate from the theorem and this
fact.

We are now ready to prove our main result.

Proof of Theorem 1. Let K Q(0) where I qs, and let L Q(ÇW).

Set 7rn — 1 — qx(n, and set ir NL/K{^n)- Since the case of s 0 is trivial,
assume s > 0 (and hence n > 1). Note then that with this assumption we

can use property (2) and apply formula (1) to obtain

p Qniqx) 3>„0 ,<?*)= U (1 - ^x^') S3 Nk(ir).
W,/7)=l

Now let a be an integer dividing x. Decompose a as a where
a7 is not divisible by <7. In the case of interest, (A/) is the only prime of
K dividing q\ and / odd implies that there are no real archimedean primes.
The general reciprocity law (5) then directly yields that

Note that since nn 1 mod qa, we have 7r 1 mod qa as well.
Furthermore, since

q- 1

<? <A(1) ID -0'
d-1

we see that A<p! divides <7. In particular, A^ divides q so that 7r 1 mod X2.

By Corollary 8, this implies tt 1 mod f/Oz7), so (7r,a7)f 1. Noting that

7T 1 mod a7, we have by Theorem 5(c)
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and thus {a!/tt)i 1 by (7).

If k > 0, then ir 1 mod qa implies ir 1 mod q2, so Corollary 8 yields

7r : 1 mod fi(q). Thus using the reciprocity law (6) we see that

-) (t T,1

Using multiplicativity of the power residue symbol from Theorem 5(a), we

conclude
\ / / X / * k

a\ fa \ I q

W/ W/W/
1.

Since tt is a prime with norm p — we have from formula (3) that

a(/>-0/! i mod p. That is, a is an Ith power modulo p.

Upon examining the proof, it is clear that one need not restrict attention

to cyclotomic polynomials. For instance, one might look instead at primes of
the form p Nq{C(?)(l + A^x) so that any integer dividing x is a gth power
modulo p. If q 5 for instance, then p 1 + 5x + 10x2 + 25x4 and so is

still quite simple in form. The case of cyclotomic polynomials is interesting

however, both in the fact that it can be written in basic terms in a general

form and in that it was originally conjectured solely on the basis of numerical

evidence.

As an alternative to the proof we have just given, as well as those we give

below, one may avoid norms by working with / th power and norm residue

symbols over the field L — Q(G?)- In this field, there may be several primes

lying over q. This results in a product of symbols in the reciprocity laws. One

then notes that the conductors do not change in the (unramified) extensions

of Qq(Ci) which are the completions of L at the primes over q and proceeds

similarly. This also avoids use of a generating function for homogeneous

cyclotomic polynomials below. The proofs given, however, represent a more
basic approach that was clearer to the author four years ago when the theorems

were first proven.
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5. Homogeneous polynomials

Generalizing Theorem 1 to include homogeneous polynomials introduces
subtle difficulties, which we address in the following proof.

Proof of Theorem 2. Let K and L be as in the proof of Theorem 1. We

set 7vn y — qxQn and tt NL/K(Tcn) and note p Nk(tt) with the assumption
s > 0. Now let a be an integer dividing a, and decompose a as a a'qk

where a' is not divisible by q. Let / i= NL/K(y) y^-L:K]. We remark that

7T y' mod qa since 7vn y mod qa.
We can now apply reciprocity. We are interested in evaluating the symbol

(a/ix)i. We can use reciprocity laws (5) and (6) along with multiplicativity
from Theorems 5(a) and 6(a) in the following manner. We have

k
a\ I a \ f q\ I 7T

TT / 7 V 7T / / V 7T / » \a
7^ (tt, a)i(TT, q)\(TT, a),.

Now 7T y' mod a' so (7x/a')i iyf/a')i by Theorem 5(c). And letting
(yO-1 denote the g-adic inverse of yr in Z^, we have

(tt a) i(tt(3 >')~\a

Let 7r' tt^O-1 • Now tt' 1 mod ga. So tt7 1 mod g, and if divides

a, then 7r7 1 mod q2. Thus the fact that X2 divides q implies n' m I
mod fi(a) by Corollary 8. Thus (tt', a\ 1.

We now have that

MS)?-«-
The symbol (y' jo!)i is an /-th root of unity, and by Theorem 5(d) an element

a £ Gk acts on it as follows : y'\cry'\a' )7 V 00! Jj \a'

since a' and y' are rational integers. Since / is odd, the only such root of
unity fixed under the action of the Galois group is 1. In the same manner,
Theorem 6(h) enables us to see that (/, a)i 1. We therefore conclude that

(a/ir)i 1.
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6. What about q

We pose the question: is q necessarily a qsth power modulo p in

Theorem 2 A numerical test will quickly show that this is most certainly

not always so. However, Theorem 3 tells us that the answer is in fact "yes"

in most cases.

Proof of Theorem 3. Let K, L, it be as in the proof of Theorem 2 and

assume s > 0. Note first that (q/nf {ir,q)i by reciprocity law (6). We will
evaluate the latter symbol.

Viewing On/i(X. Y) as a polynomial over K, we have that

TT *= NL/kö7 - <E>«//Cy, ^C/) >

where 0 in this equation is given by • We now state the following
generating formula for homogeneous cyclotomic polynomials :

y111

(8) 3>m(V Y)
n w,y)
d\m

0<d<m

Applying this formula recursively, we see that tt is expressible as a product of
numbers of the form /' — (qxQY and reciprocals of such numbers, where r is

some positive divisor of «//.To show that (tt, q)i — 1, it is by bimultiplicativity
enough to show that (/" — (qxQ)'\q)i 1 for all such r. And since n/l is

relatively prime to q, it will clearly suffice to show that (y — qxQ, q)i 1 for
any choice of Q and integers x and y with y relatively prime to q.

We have

Cy - qxQ, q)i (y,g)-qxy~l(„

The first symbol (y, q)j is fixed under the action of the Galois group
by Theorem 6(h) since y,q G Q^. As an Zth root of unity with I odd, it must
therefore be 1.

By Theorem 6(f), (1 - qxy~lQ,qxy~lQ)i1. But by bimultiplicativity,
this means that

(1 - qxy-l(hq),(1 - qxy~lQ,xy~lyp (1 - qxy~lÇh O),-'

Corollary 8 yields that 1 -qxy~\,:1 mod f/(xy-1), and so the first symbol
on the right is 1. The second symbol can be evaluated by turning it back
into a power residue symbol and applying (4). Since Q is a unit in the ring
of integers of K, the reciprocity law (5) yields
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(9) (l-CT-'0,0)i=f, ° „)
Thus (1 — qxy~lQ>0i will equal 1 if and only if Afc(l — gxy_1(/) 1

mod gZs'. In fact,

q~x

Nk( 1 - qxy~1Q ^fqxy~x)iqS
'

1 mod ^ '

/=o

It is easily seen that qs~{ > 2s exactly when stated in the theorem.

One remark on the case s 1. If in fact we take n — q, then since

Oq(X) 1 + X 4-• • + Xq~l we have that p 1 mod q2 if and only if q
divides x. Then q is a qth power modulo p if and only if x is divisible by

q, in stark contrast to the above theorem.

7. The even case

We now turn to the case of q 2. Given a positive integer .9, let us set

/ =:2s. We refrain from proving the theorem for the more general case of
homogeneous polynomials, though it holds under such a generalization.

Any a e Q2 may be written uniquely as a £2b(—3)c where £ ±1,
b G Z, and c G Z2. Note that b — V2(ot), where V2 is the 2-adic valuation.

Denote by f/(a) the conductor of the norm residue character •, a)i in Q2((/) •

The conductors in this case have been worked out by Despina Prapavessi in

[P]. We use a corrected version of her theorem [Shi].

THEOREM 9 (Prapavessi). Let a G QJ and write a ^2b(—3)c as above.

Let w min v2(c) + 2}. Then if Ç 1,

if w ~ 0,

if w — 1 and s > 2,

if 2 < w < s and w v2(c) + 2,

if 2 < w < s — 1 a/îJ w < v2(c) + 1,

if 2 < w s — 1 u; - i;2(c) + 1,

otherwise.

f/(a)

(8)

(4)

(Ä2w- 1

(A2w A2W+j

(A2,->)

(1)
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//£ " 1,

' (8) if iu 0,

(2A4) if w 1 fl/îd 5 > 2.

f/(a) (1) if w =1,5 2, and t'2(c) > 0,

(2) if w s= 1, I 2, t>2(c) 0,

(4) otherwise.

We have the following immediate corollary.

Corollary 10. Let a G Qf Then (8) ç ffa). If v2(oï) 0, then

(4) Ç ffa) and either (2) Ç ffa) or (2) Ç f/(—a).

The assumption that n is a multiple of 4 in Theorem 4 allows us to avoid

being forced to deal with the real infinite prime. Nevertheless, in contrast to

the odd case, we cannot prove this theorem directly from the conductors when

s > 2. Instead, we shall first need to prove the following lemma.

LEMMA 11. Set I 2s for some s > 2. Then the following two identities
hold:

(a) (1 -2Q.-1), 1 and

(b) (1-40-2)/=!.
Proof To prove (a), note that ((8 + Cg"1)2 2. Thus for s > 2 we have

that \fl G Q2(C/) • Then 1 —20 factors as 0+n/2C2/)(1-\/2C2/) in ChCCz/),
and

^Q:(C2/)/Q2(C/)(1 ~ /) 1 - 20 •

Noting that Qi is an Ith root of -1, we have that 1 - 20 is a norm
from Q2(\/—T) to Q2(0) • Theorem 6, parts (b) and (c), together imply that

(1-20.-1)/= 1.

As for (b), we remark that

^Q2(C2/)/Q2(C/)^ ~ 2C2/) 1 - 40

Hence we have

(1 - 40. 2),(1 - 2C2/. 2),q2(Ç2() (1 - 2(2,: C2,)^2(Ç2(),

where we have used several properties from Theorem 6 : (d) in the first step,
(a) and (f) in the last. The last symbol in this equation is now easily calculable
as in formula (9). We have
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/I OA A \ —J aO tfQ(C2/>0 ^2l))/i J- — 21 /I — 21 s

(1 2Ç2/, C2/)/jq2(^2/) — C2/ — S2/ — S2/

Now the last term is 1 if and only if 2,y — s > s + 1, or equivalently, 2s' > 2s.

This occurs when s > 2.

We are now ready to prove Theorem 4.

Proof of Theorem 4. Set / 2s', A' Q(0)> and L Q(0z)- Let a be an

integer dividing x. In the case / 4, the proof is nearly identical to the proof
of Theorem 1. Therefore we will concentrate on the proof of the case I > 4,
or s > 2. Let tt^ 1 — 2x£n, so that Nifitf) p, and set 7r Nl/k(it„).
Note that tt 0/2//(l, 2x0), with 0 satisfying Recalling the

generating formula (8), we conclude as in the proof of Theorem 3 that n is

expressible as a product of numbers of the form 1 — (2x0)r and reciprocals
of such numbers. But since r is necessarily odd and (2x)r is still just some

multiple of a, in order to show that (tt,d)i =1 it is enough to show that

(1 — 2x0, a)/ — 1 f°r any multiple x of a and any choice of 0-
We first examine the case of x odd, in which case a must be odd as well.

In that x is odd,
1 — 2x0 =1-20 mod 4

Since (4) C ffa) by Corollary 10, this tells us that (1 —2xQ. a)j (1—20, <2)/.

Corollary 10 also yields that (2) Ç ffa) or (2) Ç ff—a). In the former case,

the last symbol is clearly 1. In the latter, we do the following :

(1 - 20, a)i (1 - 20, -a)i( 1 - 20, -1)/ 1

where the first symbol is 1 since (2) Ç ff—a) and the second symbol by
Lemma 11(a).

We now turn to the case of x even. If 4 divides x then 1 — 2x0 1

mod 8, and Corollary 10 implies (1 — 2x0, Cl)i 1. So assume that 4 does

not divide x. In this case,

1 — 2x0 =1—40 m°d 8

so that Corollary 10 yields (1 — 2x0, a)i (1 — 40, a)i- Note that v2 (a) <
v2(x) 1. If v2(a) 0 then a is odd, so (1 — 40, ß)/ — 1 since (4) Ç ffa)
by Corollary 10 again. If v2(a) 1, then we do the following:

(1 - 40, a)i (1 - 40, a/2)t (1 - 40, 2)/ 1

where the first symbol is 1 by the previous remark and the second symbol

by Lemma 11(b).
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We have shown that (tt, a)i 1, and we get the desired result if (a/ir)i — 1.

This is easily seen. Let a a'2k where a! is odd. Then

where we have used the reciprocity laws (5) and (6) in the second equality
and Theorem 5(c) in the third.

8. The second proof

This second proof is in many ways preferable to the first. It is much
less dependent upon machinery (i.e., knowledge of the conductors), and it is

specific to the case of cyclotomic polynomials.

Second proof of Theorem 1. We keep the notation of the first proof. The

beginning of the proof runs along the lines of the first. Via the reciprocity
laws, we therefore conclude that

•Y •

As in the proof of Theorem 4, it suffices to show that (1 — qxQ,a)i — 1 for
any multiple y of a and a primitive Zth root of unity Q.

By Theorem 6(f), we have

(1 - qxQ, a)i (1 - qxQ, qxa~lQ)fl (1 - aa: a)i,

where we have set a — qxa~xQ.
Now note that if we are given a power series f G Zq[[X]] with f(0) 7;

and a symbol (1 — affa), a)i, we can use multiplicativity on the left to
manipulate the symbol into

((1U - <*'> «Y - 1("). a); (1 - Y a),7',

where fi+is another power series over Zq. Since a has positive valuation,
large enough powers of it will be congruent to 0 modulo the conductor of a.
Therefore the symbol (1 - a'fj(a), a), will be 1 for large i. Taking
we see recursively that (I - act, a), can be expressed as a finite product of
powers of symbols of the form (1 - a',a),with 1.



334 R.T. SHARIFI

Let us fix an i and set i i'qr with i' not divisible by q. Then i' is

invertible mod /, and so by multiplicativity of the norm residue symbol we
have

(1 — o^ia)i «s (1 — (a1')q\a1'.
Now note that ß a1' has the same form as a. That is, ß is an integer

multiple of q times a primitive nth root of unity. It will therefore suffice to
show that (1 — aq\a)i 1 for all r > 0. If r 0, then Theorem 6(f) tells

us already that this symbol is 1.

Now assume 1 < r < s (so s >2). Note that

1 - qxQ/P[(l -
i=i

So we need only show that (1 — qxQÇ, qxQ)i 1 for every qs~lth root of
unity £. In this case,

(1 -qxQ0 qxQ)i(1 - qxQ£, Oj-1

by Theorem 6(f). As in (9), we can apply reciprocity law (5) and equation

(4) to obtain

(10) (1 - qxÇiÇ, Ol

Here we have used the fact that Q is a Galois conjugate of C/£- Note that

Nk(i - q*0) i m°d qqS
'

•

As qs~l >2s—\ for ^ > 2 and q > 3, we conclude that the symbol in (10)
is 1.

Finally, assume that r > s. We then have

(1 - (qxQq', qxQi — (1 - (qx)q\qx)i( 1 - (qxfi, Q))

As both entries are rational, we have that (1 — (qx)q ,qx)i is an Ith root of
unity which, by Theorem 6(h), is invariant under the action of Gq^/q and

so must be 1. Furthermore, (1 — (qx)q> ,Q)i can be evaluated as in (10). Since

[K : Q] qs~x(q - 1), we have

Nk( 1 ~ (qx)q (1 - (qx)qr)qS 1 mod qqr+s~[.

Now we need only note that qr + s — 1 > 2s for all r > s to finish the

proof.
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This method is easily used to deal with the case of q 2, as most of the

proof carries over. We leave the proof to the reader. Extending this method,

the author has been able to compute the conductors which were used in the

first proof of the theorems (for all q) [Sh2].

Acknowledgments. Hendrik Lenstra was of great help throughout the

preparation of this paper. Robby Robson, along with Tom Schmidt, advised

me at the 1993 NSF Research Experiences for Undergraduates program at

Oregon State. Raghavan Narasimhan made many helpful comments. I thank

them, and all those who offered me guidance, wholeheartedly.

REFERENCES

[AT] Artin, E. and J. Tate. Class Field Theory. Harvard, 1961.

[CF] CASSELS, J. W. S. and A. FRÖHLICH, eds. Algebraic Number Theory.
Academic Press, New York, 1967.

[CM] Coleman, R. and W. McCallum. Stable reduction of Fermât curves and
Jacobi sum Hecke characters. J. Reine Angew. Math. 385 (1988),
41-101.

[C] COX, D. Primes of the Form x2 + ny2. John Wiley & Sons, New York,
1989.

[FV] FESENKO, I. and S. VOSTOKOV. Local Fields and Their Extensions: A
Constructive Approach. American Mathematical Society, Providence,
1993.

[H] HASSE, H. Bericht über neuere Untersuchungen und Probleme aus der
Theorie der algebraischen Zahlkörper, Teil II: Reziprozitätsgesetz.
Physica-Verlag, Würzburg, Germany, 1965.

[IR] IRELAND, K. and M. Rosen. A Classical Introduction to Modern Number
Theory, 2nd. ed. Springer-Verlag, New York, 1990.

[Iw] Iwasawa, K. Local Class Field Theory. Oxford University Press, New York,
1986.

[Iy] Iyanaga, S. The Theory of Numbers. American Elsevier Publishing, New
York, 1975.

[La] Lang, S. Algebraic Number Theory. Addison-Wesley, Reading, Mass., 1970.

[N] Neukirch, J. Class Field Theory. Springer-Verlag, New York, 1986.

[P] Prapavessi, D. On the conductor of 2-adic Hilbert norm residue symbols.
J. Algebra 149 (1992), 85-101.

[Se] Serre, J.-P. Local Fields. Springer-Verlag, New York, 1979.



336 R. T. SHARIFI

[Shi] Sharifi, R. Ramification groups of nonabelian Kummer extensions. J.

Number Theory 65 (1997), 105-115.

[Sh2] On norm residue symbols and conductors. In preparation.

(Reçu le 18 novembre 1997)

Romyar T. SHARIFI

Department of Mathematics
University of Chicago
5734 S. University Ave.
Chicago, IL 60637
U. S. A.
e-mail : sharifi@math.uchicago.edu


	ON CYCLOTOMIC POLYNOMIALS, POWER RESIDUES, AND RECIPROCITY LAWS
	...
	1. Introduction
	2. Statement of results
	3. Background
	4. The odd case
	5. Homogeneous polynomials
	6. WHAT ABOUT q?
	7. The even case
	8. The second proof
	...


