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ON CYCLOTOMIC POLYNOMIALS,
POWER RESIDUES, AND RECIPROCITY LAWS

by Romyar T. SHARIFI

ABSTRACT. For a positive integer n, let ®,(X) be the nth cyclotomic polynomial
over the rationals, i.e., the monic irreducible polynomial which has as its roots the
primitive nth roots of unity. Fix an odd prime ¢ and let s be the largest integer such
that ¢* divides n. If p is a prime of the form p = ®,(gx) for some integer x, then all
integers dividing x are ¢'th powers modulo p. An analogous statement holds for the
case g = 2. The proofs make use of norm residue symbols in cyclotomic extensions
of the g-adic rationals.

1. INTRODUCTION

This paper is concerned with an interesting property of power residues
of primes which appear as values of a cyclotomic polynomial. To gain an
understanding of power residues, we could start by looking for patterns in
a list of primes and the index of various integers modulo these primes. The
case of quadratic residues is well-known, dating back to Euler, Legendre,
and Gauss. We might notice, for instance, that a number a i1s a quadratic
residue modulo primes of the form 4x 4 1, where x is a multiple of a. In
general, those primes which have a given number a as a quadratic residue are
completely determinable using the law of quadratic reciprocity. Indeed, this
problem was one of the main motivations for the formulation of this law.

As an attempt to extend the quadratic case, we can look for a polynomial
that produces primes which have a as a cubic residue. In doing so, we
may discover that a is a cubic residue of primes of the form 9x* + 3x + 1,
where x is a multiple of a. A complete classification of cubic residues is
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320 R.T. SHARIFI

difficult and does not generalize well to higher powers. On the other hand,
the simple form of our example makes it possible to guess a generalization.
For instance, we may check that a is a quintic residue of primes of the form
625x* + 125x> + 25x> + 5x + 1, where x is a multiple of @. At this point,
the key observation is that the polynomials we are describing come from
cyclotomic polynomials. Through this observation and numerical tests, we are
led to conjecture the theorems proven in this paper.

As one might expect, the proofs of our conjectures use reciprocity laws
which arose as generalizations of quadratic reciprocity. For arbitrary nth
powers, these laws are quite deep results of class field theory. Due to the
sharp contrast between the elementary nature of the statements of the theorems
and the sophisticated tools needed in their proofs, we have provided the
necessary background concerning reciprocity laws in Section 3. Through the
reciprocity laws, the theorems become reduced to questions about the norm
residue symbol of local class field theory. This symbol is an extremely useful
tool which provides much insight into our result. '

Those acquainted with classical reciprocity laws may notice that the known
conductors of the norm residue symbol which we describe below provide a
generalization of the very beautiful reciprocity law of Eisenstein [IR, Ch. 14].
This leads us to our first proof of the main theorem. We also provide a
second proof which, although somewhat less general, completely avoids the
extra machinery of conductors.

This paper 1s intended both for non-specialists who would like to learn
something about class field theory and reciprocity laws and for specialists who
want to see a fun application of what they know.

2. STATEMENT OF RESULTS

Given a positive integer m, we denote the mth cyclotomic polynomial over
the rationals by ®,,(X). That is, we define ®,,(X) to be the monic irreducible
polynomial which has as its roots the primitive mth roots of unity in the field
of complex numbers.

THEOREM 1. Let g be an odd prime and n a positive integer. Let s be
the largest integer such that q* divides n. Let p = ®,(gx) for an integer x.
If p is a prime number then every integer dividing x is a g’ th power residue
modulo p.
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For a prime p congruent to 1 modulo m, an integer a relatively prime
to p is said to be an mth power residue modulo p if a?=b/m =1 mod p.
Equivalently, a is an mth power (residue) modulo p if a = z" modp for
some integer z which is not divisible by p.

The following two formulas show how to generate cyclotomic polynomials;
here, (,, is a primitive mth root of unity:

,X) = ][ &@—-¢D

(d,m)=1

0<d<m
& (X) B )
m - H ch (X) .
d|lm
O<L<m

We give two proofs of Theorem 1. The first serves as an example of the
computation of power residues through knowledge of norm residue symbols
and their conductors and is given in Section 4. The second proof does not
require knowledge of the conductors and is given in Section 8. (It is also
several years more recent than the first.)

The theorems which follow illustrate three different natural extensions of
Theorem 1. We shall be content with these to convey the power of the tools
we employ and will not seek to push generalizations to their extremes.

For a positive integer m, let ®,(X,Y) denote the mth homogeneous
cyclotomic polynomial, which is simply the mth cyclotomic polynomial
homogenized. That is, it can be defined as follows:

(1) ®,X, V)= [] &x—v¢h.
(d,m)=1

These polynomials have the property that for m > 1,
2) D, (X, Y) = Dy (Y, X) .

The proof of the following can be found in Section 5.

THEOREM 2. Let q be an odd prime and n a positive integer. Let s be
the largest integer such that g* divides n. Let p = ®,(qx,y) for integers x

and y. If p is a prime number, then every integer dividing x is a q*th power
residue modulo p.

In Theorem 2, we know ¢ divides gx, yet ¢ is not necessarily a ¢*th
power modulo p. Can we find cases in which ¢ is necessarily such a power ?

We give an answer here, and for the proof, see Section 6.
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THEOREM 3. Let p be as in Theorem 2. Then if ¢ >3 and s > 2, or
q =3 and s >3, we have that g is a ¢°th power modulo p.

We will also derive an analogue of Theorem 1 for the always tricky case
of g = 2. The proof is found in Section 7 and requires the use of several
valuable properties of norm residue symbols.

THEOREM 4. Let n be a positive multiple of 4, and let s be the largest
integer such that 2° divides n. Let p = ®,(2x) if s> 2, and let p = ®,(4x)
if s=2.1f p is a prime number, then every integer dividing x is a 2°th
power modulo p.

We shall use the following notation throughout the remainder of the paper.
Lower case Roman letters will denote rational integers unless otherwise noted.
In particular, we shall use m as a generic positive integer. Furthermore, ¢, will
denote a primitive mth root of unity in an appropriate cyclotomic extension
of the rationals Q, and for such a choice of (,, we set \,, =1 — (,,. For a
Galois extension K of a field F, we will denote its Galois group by Gg
and its norm by Ng,p. If the ground field F is Q, it shall be left out of the
notation. For example, the Galois group of K over Q is denoted by Gg.

3. BACKGROUND

We now recall the formalism of the power residue and norm residue
symbols and list the general reciprocity laws that relate them. This section is
designed for those not yet familiar with this material and may be skipped by
others. Most of the bibliographical references give a more thorough treatment
of one or more aspects of the material we present below. This section requires
only knowledge of algebraic concepts such as the integral closure and Galois
theory, but it will help to have some knowledge of local and global fields.

By an algebraic number field F we mean a finite extension of the rationals.
Its ring of integers A is the integral closure of Z in F. The set of fractional
ideals of F 1is the set of finitely generated non-zero A-submodules of F.
Any fractional ideal can be uniquely factored into integral powers of a finite
number of prime ideals, and hence the fractional ideals form a group by
taking formal products of the prime ideals. A non-zero element a of F will
be treated as a fractional ideal by considering the fractional ideal «A that it
generates.
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The additive p-adic valuation v, corresponding to the prime ideal p returns
the power of this prime ideal occurring in a factorization of the fractional
ideal. Two fractional ideals a and b of A are said to be relatively prime
if for every prime ideal p such that vy(a) # 0 we have v,(b) = 0. For
ap.---.a, € F*, denote by I(a;. - .a,) the group of fractional ideals of A
which are relatively prime to aj.--- .aq,.

Let F be an algebraic number field containing the set pu,, of mth roots
of unity. Then for a € F* and b € I(m.a), the mth power residue symbol
takes on a value in 1, and is denoted

(a/b)m.F or (%) .
m.F

When usage is clear, we will leave F out of the notation.

For an ideal b of A, we let Nb = [A : b]. As a result, Nb = [Z : Ngb]
and Ngb = (Nb). For a prime ideal p and a € F* relatively prime to p we
have the following formula:

(3) ‘ <§-> =aWPT/m mod

We also have:

THEOREM 5. The power residue symbol (-/-), has the following
properties :
(2) (aa’/b), = (a/6),(a'/b), for a.a’ € F* and b € I(m.a.a’);
(b) (a/bb), = (/) (a/6)y for a € F* and 6.6’ € I(m.q);
(¢) (a/b)y = (a'/b)y if a = a’modb for a.a’ € F* and b € I(m. a),
b an ideal;

(d) o(a/b), = (ca/ob),, for a € F*, b € I(m.a) and o an automorphism
of F.

Finally, when a is an mth root of unity, the power residue symbol can

be evaluated by using (3) and Theorem 5(b). For § € 1y and b € I(m), one
sees that

§ No—
4 S — c(Nb 1)/m
@ (6), ~s

By a local field we mean R, C or a finite extension of Q,. the p-adic
numbers, for some prime number p. In the latter case, the field is called

non-archimedean and in the others, archimedean. Archimedean local fields
[ e e




324 R.T. SHARIFI

arise through completion of an algebraic number field with respect to an
embedding of it in R or C. A non-archimedean local field over Q, arises
through completion of an algebraic number field F with respect to a metric
determined by the additive valuation associated to a prime ideal p of A which
lies over the prime ideal p of Z.

Both the absolute values defined by archimedean embeddings and the prime
ideals of the ring of integers of the number field F are referred to as primes of
F.Let p be a prime of F, and take the completion of F' as described above.
We say that the resulting local field Fy is the completion of F at the prime
p. It is a topological field under the topology induced by the completion. In
the non-archimedean case, the subring of F,, which is the completion of the
ring of integers of F is a local ring called the valuation ring O, of Fy.

Let K be a local field which contains the mth roots of unity. Then
('7 ')m,K: K*x K" — Hom

will denote the mth norm residue symbol of a field K with multiplicative
group K*. We use the definition of the norm residue symbol coinciding with
that of [CF], [H], and [Se], which is the inverse of the symbol defined in
[AT], [FV], [Iy], and [Ne]. As with the power residue symbol, K will usually
be left out of the notation.

The norm residue symbol has many important and useful properties. We
list several of them in the following theorem.

THEOREM 6. The norm residue symbol (-, ),k has the following

properties :

(@) (-, )m is bimultiplicative;

®) (@, Bm = (B, )" for o, B € K*;

©) (o, =1 for a, € K* if and only if B is the norm of an element
of K(¥/a);

(d) (o, Bmr = WNpx(@), Dmx for a € L*, 3 € K*, where L is a finite
separable extension of K ;

e (o, By, = (a,B)m for o, € K* if pimy © K

0 (0,1 —a),=1for a e K*;a#1;

(g) (a,—a), =1 for a € K*;

(h) o(a, By = (o, aB), for o, B € K* and o a continuous automorphism
of K.
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Now assume that K is non-archimedean. For § € K*, the conductor of the
norm residue symbol (-, (), x is an ideal f = f(#) of the valuation ring Ok
and hence a power of the unique maximal ideal of this ring. The conductor 1s
the largest ideal having the property that if o € Of is such that o = 1 mod f,
then (o, B)x = 1.

Again let F' be an algebraic number field containing the mth roots of
unity. Let oo denote the formal product of the real primes (embeddings) of
the field F, and let F, denote the completion of F at a prime p. Then we
have the following law of reciprocity for «, 8 € F* relatively prime to each
other and to m :

o 15, -
5 A - = 3 m,Fy s
( ) (ﬁ)m,F <a>m,F H (/6 CY) o

p|moo

where p | moo indicates that p appears in the decomposition of moo into a
product of primes. (That is, the product is taken over all prime ideals dividing
m and all real primes.) Furthermore, if v € F* is such that p divides m for
all prime ideals p satisfying v,(7) # 0 and § € F* is again relatively prime
to m, we have

(6) (1> = 11 G-, -
ﬁ m,F

p|moo

4. THE ODD CASE

For an odd prime ¢ and a positive integer s, we now set [ — q . If
o € Qj]‘, then o may be written uniquely as o = £q°(1 — q)° where
£ € pyge1, b € Z, and ¢ € Z,. Note that b = v,(a), where vy 1S
the g-adic valuation. Denote by f,(a) the conductor of the norm residue
character (-,a); for the [th cyclotomic field Q,(() over the g-adic ra-
tionals Q,. Robert Coleman and William McCallum have computed these
conductors for all o € Qj/‘ in [CM]. We state the result here, though

we shall use only its corollary. Recall that Am = 1—(, for all positive
integers m.
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THEOREM 7 (Coleman and McCallum). Let o € QF, and write o =

*
q’

£q°(1 — q)¢ as above. Let w = min {v,(b), v,(c)+ 1}. Then

( (AgwAgw+1)  if w<s and v, (b — gc) > w, else:
(g7 if w=0,
il =< 1 .
()\qw) fl1<w<s, orw=s=1v,c)+1,
L (1) otherwise .

We have the following useful corollary.

COROLLARY 8. Let o € QJ. Then (q)) C fi(e). If vy(a) = 0, then
(M) € fi(@).

Proof. Since (, is an integral power of (,, we have that Ajw = 1 — (v
divides A, = 1 — (,. The corollary is immediate from the theorem and this
fact. ([

We are now ready to prove our main result.

Proof of Theorem 1. Let K = Q((;) where [ = ¢*, and let L = Q((,).
Set 7, = 1 — gxC,, and set ™ = Ny x(m,). Since the case of s =0 is trivial,
assume s > 0 (and hence n > 1). Note then that with this assumption we
can use property (2) and apply formula (1) to obtain

p=®@ulqx) = Du(l,q0) = [] (1= qx¢) = Ny(m) = Ni(r).
(d,n)=1
Now let a be an integer dividing x. Decompose a as a = a’¢g* where
a' is not divisible by ¢. In the case of interest, (};) is the only prime of
K dividing ¢*, and [ odd implies that there are no real archimedean primes.

The general reciprocity law (5) then directly yields that

, 1
) (“—) (1> y——
TJIN% /)

Note that since 7, = 1 modga, we have m = 1modga as well.
Furthermore, since

g—1
g=o,)=]]a-¢h,
d=1

we see that /\Z—1 divides ¢. In particular, Afl divides ¢ so that m = 1 mod Afl.

By Corollary 8, this implies 7 = 1 mod f/(a'), so (m,a’); = 1. Noting that
m = 1 mod &', we have by Theorem 5(c)




ON CYCLOTOMIC POLYNOMIALS 327

(3) = ()=

and thus (a’/m); =1 by (7).
If k>0, then 7 = 1 mod ga implies 7 = 1 mod g*, so Corollary 8 yields
7 = 1 mod §,(g). Thus using the reciprocity law (6) we see that

@) = (m g =1.
T/

Using multiplicativity of the power residue symbol from Theorem 5(a), we

conclude
: k
9O
Uy TN/

Since 7 is a prime with norm p = Ng(7), we have from formula (3) that
a?=Y/I' = 1 mod p. That is, a is an [th power modulo p. L[]

Upon examining the proof, it is clear that one need not restrict attention
to cyclotomic polynomials. For instance, one might look instead at primes of
the form p = N, (1 + /\?Ix) so that any integer dividing x 1s a gth power
modulo p. If ¢ =5 for instance, then p = 1+ 5x + 10x? 4+ 25x* and so is
still quite simple in form. The case of cyclotomic polynomials is interesting
however, both in the fact that it can be written in basic terms in a general
form and in that it was originally conjectured solely on the basis of numerical
evidence.

As an alternative to the proof we have just given, as well as those we give
below, one may avoid norms by working with /th power and norm residue
symbols over the field L = Q(¢,). In this field, there may be several primes
lying over ¢. This results in a product of symbols in the reciprocity laws. One
then notes that the conductors do not change in the (unramified) extensions
of Q,((;) which are the completions of L at the primes over g and proceeds
similarly. This also avoids use of a generating function for homogeneous
cyclotomic polynomials below. The proofs given, however, represent a more
basic approach that was clearer to the author four years ago when the theorems
were first proven.
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5. HOMOGENEOUS POLYNOMIALS

Generalizing Theorem 1 to include homogeneous polynomials introduces
subtle difficulties, which we address in the following proof.

Proof of Theorem 2. Let K and L be as in the proof of Theorem 1. We
set m, = y—gxC, and ™ = Ny g(m,) and note p = Ng(m) with the assumption
s > 0. Now let a be an integer dividing x, and decompose a as a = a’g*
where o' is not divisible by ¢. Let y' = Ny /x(y) = y"**. We remark that
m =y mod ga since w, =y mod ga.

We can now apply reciprocity. We are interested in evaluating the symbol
(a/m);. We can use reciprocity laws (5) and (6) along with multiplicativity
from Theorems 5(a) and 6(a) in the following manner. We have

a k
@ = (“—) (—q-> = (ﬁ> (r,a ) (7, q)f = (5> (m,a);.
T/ T/I\T/ aj @ /i

Now 7 =y modd so (w/d'); = (y'/a'); by Theorem 5(c). And letting
()~! denote the g-adic inverse of y' in Z,, we have

(m,a) = (x() " a)n O, a).

Let 7/ = 7(y)"'. Now 7/ =1 mod ga. So 7’ =1 mod ¢, and if g divides
a, then 7" =1 mod ¢*>. Thus the fact that )} divides g implies 7’ = 1
mod f;(a) by Corollary 8. Thus (7/,a), = 1.

We now have that
a /
(—) - (y-) o' ay.
T/ aj

The symbol (y'/a’); is an I-th root of unity, and by Theorem 5(d) an element
o € Gk acts on it as follows:

YN Z (N (Y
a ), od ), a’l7

since @’ and y' are rational integers. Since [ is odd, the only such root of |
unity fixed under the action of the Galois group 1s 1. In the same manner,
Theorem 6(h) enables us to see that (y/,a); = 1. We therefore conclude that
(a/m)y;=1. [
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6. WHAT ABOUT ¢ ?

We pose the question: is g necessarily a g’th power modulo p in
Theorem 22 A numerical test will quickly show that this is most certainly
not always so. However, Theorem 3 tells us that the answer is in fact “yes”
in most cases.

Proof of Theorem 3. Let K, L, m be as in the proof of Theorem 2 and
assume s > 0. Note first that (g/m); = (m, ¢); by reciprocity law (6). We will
evaluate the latter symbol.

Viewing @, (X, Y) as a polynomial over K, we have that

™= NL/K()’ - qun) — CDzz/l(y7 qxg/)a

where (; in this equation is given by C,"/ = ,'Z/ ' We now state the following

generating formula for homogeneous cyclotomic polynomials:

xm . ym

[ ®uX,Y)
d|m
O<c|l<m

(8) (I),,,(X, Y) -

Applying this formula recursively, we see that 7 is expressible as a product of
numbers of the form y" — (¢gx(;)" and reciprocals of such numbers, where r is
some positive divisor of n/l. To show that (7, ¢); = 1, it is by bimultiplicativity
enough to show that (y" — (gx(;)",q); = 1 for all such r. And since n/l is
relatively prime to ¢, it will clearly suffice to show that (y —gx(;,q); = 1 for
any choice of (; and integers x and y with y relatively prime to g.

We have

0 —gxC @1 = O, (1 — gy~ ¢, q)r -

The first symbol (y, g); is fixed under the action of the Galois group Gq,n/Q,
by Theorem 6(h) since y,q € Q,. As an [th root of unity with [ odd, it must
therefore be 1. |

By Theorem 6(f), (1 — gxy~'(;, gxy~'¢); = 1. But by bimultiplicativity,
this means that

=gy "G =1 — gy Gy D7 — gy ™1, )7t

Corollary 8 yields that 1 —gxy~!¢; =1 mod f;(xy~!), and so the first symbol
on the right is 1. The second symbol can be evaluated by turning it back
into a power residue symbol and applying (4). Since (; is a unit in the ring
of integers of K, the reciprocity law (5) yields
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9) (1 —gxy™ ¢, O = ( c — > = (Mr=aoc) DIt
1 —gxy="¢/,

Thus (1 — gxy~'(, ¢); will equal 1 if and only if Ng(l — qxy~'¢) = 1
mod ¢%. In fact,

g—1
= _ i.‘:—l o g—1
Ne(l—qry™'¢) = (gry™) =1 modg? .
=0

It is easily seen that ¢*~' > 2s exactly when stated in the theorem. []

One remark on the case s = 1. If in fact we take n = ¢, then since
O,X)=1+X+--+ X! we have that p = 1 mod ¢* if and only if g
divides x. Then g is a gth power modulo p if and only if x is divisible by
g, in stark contrast to the above theorem.

7. 'THE EVEN CASE

We now turn to the case of ¢ = 2. Given a positive integer s, let us set |
[ = 2°. We refrain from proving the theorem for the more general case of
homogeneous polynomials, though it holds under such a generalization.

Any « € Qi may be written uniquely as « = £2°(—3)¢ where £ = +1,
beZ, and ¢ € Z,. Note that b = v,(«), where v, is the 2-adic valuation.
Denote by f;(c) the conductor of the norm residue character (-, a); in Q2(()).
The conductors in this case have been worked out by Despina Prapavessi in
[P]. We use a corrected version of her theorem [Shl].

THEOREM 9 (Prapavessi). Let o € Q3 and write o = £2°(—3)° as above.
Let w = min {vy(b), vo(c) + 2}. Then if £ =1,

((8) if w=0,
4) ifw=1ands > 2,
(Mow—1) if 2 <w<s and w=vy(c) + 2,
i) =1 Awhgwt1) f2<w<s—1and w < vy(c)+ 1,
(Ags—1) f2<w=s—1and w = vy(c)+ 1,
L (D) otherwise.
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If &=~

(®)  fw=0,

2\y) ifw=1and s> 2.

fi(a) = j (D) if w=1,s=2, and v(c) > 0.
(2) ifw=1s=2, and v2(c) =0,

L (4) otherwise.

We have the following immediate corollary.

COROLLARY 10. Let « € Q3i. Then (8) C fi(e). If va(a) = 0, then
(4) C fi(a) and either (2) C fi(a) or (2) C fi(—a).

The assumption that » is a multiple of 4 in Theorem 4 allows us to avoid
being forced to deal with the real infinite prime. Nevertheless, in contrast to
the odd case, we cannot prove this theorem directly from the conductors when
s > 2. Instead, we shall first need to prove the following lemma.

LEMMA 11. Set [ =72° for some s > 2. Then the following two identities
hold :

(a) (1 =2¢.—1),=1 and
(b) (1 —-4¢.2),=1.

Proof.  To prove (a), note that ((g + (g 12 = 2. Thus for s > 2 we have
that V2 € Qy(¢;). Then 1—2¢ factors as (14 v/2(y) (1 —v26y) in Qa(Ca),

and
Nowcanyuen(l — V2G) = 1-2¢;.
Noting that (5 is an [th root of —1, we have that 1 — 2(; is a norm
from Qy(v/—1) to Q1(¢;). Theorem 6, parts (b) and (c) together imply that
(1 -2¢. 1) =1.
As for (b), we remark that
Noacn/@uen(l = 2¢) =1 -4

Hence we have

(1 - 4C/ 2)/ — (1 - 2(2[? 2)/,Q3(C31) — (1 - 2C2[ <21)1_Q12(C21) s

where we have used several properties from Theorem 6: (d) in the first step,

(a) and (f) in the last. The last symbol in this equation is now easily calculable
as in formula (9). We have
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_ (1—Nae,(1—2Ca)) /1 _aly; s
(1 — 24217 Czl)l,éz(Cz/) = §y i ? — Gy / — 42[2 .
Now the last term is 1 if and only if 2° —s > s+ 1, or equivalently, 2° > 2s.
This occurs when s > 2. [

We are now ready to prove Theorem 4.

Proof of Theorem 4. Set [ =2°, K = Q(()), and L = Q((,). Let a be an
integer dividing x. In the case [ = 4, the proof is nearly identical to the proof
of Theorem 1. Therefore we will concentrate on the proof of the case [ > 4,
or s > 2. Let m, = 1 — 2x(,, so that Ny(m,) = p, and set m = Ny k(7).
Note that m = ®©,,/(1,2x(;), with (; satisfying Cl”/[ = ,'f/l. Recalling the
generating formula (8), we conclude as in the proof of Theorem 3 that 7 is
expressible as a product of numbers of the form 1 — (2x(;)" and reciprocals
of such numbers. But since r is necessarily odd and (2x)" is still just some
multiple of a, in order to show that (m,a); = 1 it is enough to show that
(1 — 2x(;,a); = 1 for any multiple x of @ and any choice of (.

We first examine the case of x odd, in which case a must be odd as well.
In that x 1s odd,

1 —2x(;=1—-2(, mod4.

Since (4) C f;(a) by Corollary 10, this tells us that (1 —2x(;, a); = (1 —-2¢;, a);.
Corollary 10 also yields that (2) C f;(a) or (2) C f(—a). In the former case,
the last symbol is clearly 1. In the latter, we do the following:

(1 - 2<laa)l = (1 - 24-17 —Cl)[(l - 2<la —1)( =1 )

where the first symbol is 1 since (2) C f;(—a) and the second symbol by
Lemma 11(a).

We now turn to the case of x even. If 4 divides x then 1 — 2x(; = 1
mod 8, and Corollary 10 implies (1 — 2x(;,a); = 1. So assume that 4 does
not divide x. In this case,

1—2x§,51~4@ mod 8

so that Corollary 10 yields (1 — 2x(;,a); = (1 — 4(;,a);. Note that vy(a) <
vy(x) = 1. If v(a) =0 then a is odd, so (1 —4(;,a); =1 since (4) C f)(a)
by Corollary 10 again. If v,(a) = 1, then we do the following:

(1 —4¢,an=(010-4¢,a/2(1 -4¢,2) =1,

where the first symbol is 1 by the previous remark and the second symbol
by Lemma 11(b).
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We have shown that (7, a); = 1, and we get the desired result if (a /T =1.
This is easily seen. Let a = a’2* where o’ is odd. Then

a a\ /2\* 7T / k 1 _
(- (- G-t
T/, ™/ ™ ! a l a [

where we have used the reciprocity laws (5) and (6) in the second equality
and Theorem 5(¢) in the third. [

8. THE SECOND PROOF

This second proof is in many ways preferable to the first. It 1s much
less dependent upon machinery (i.e., knowledge of the conductors), and it is
specific to the case of cyclotomic polynomials.

Second proof of Theorem 1. We keep the notation of the first proof. The
beginning of the proof runs along the lines of the first. Via the reciprocity
laws, we therefore conclude that

<’a—> — (ﬂ-;a)l .
T/

As in the proof of Theorem 4, it suffices to show that (1 — gx(;,a); = 1 for
any multiple x of a and a primitive /th root of unity (.
By Theorem 6(f), we have

(1 — gx¢,a) = (1 — gx(i,qgxa™" () ' = (1 — ao, )y

where we have set o = gxa™'(;.

Now note that if we are given a power series f; € Z,[[X]] with £(0) =,

and a symbol (1 — o'fi(a), ®);, we can use multiplicativity on the left to
manipulate the symbol into

(1 - a’ﬁ(a)

Ty (L= d @) = (1 =o' fii@), 0 (1~ o @),

where fi.| is another power series over Z,. Since « has positive valuation,
large enough powers of it will be congruent to 0 modulo the conductor of o .
Therefore the symbol (1 — o/fi(e), a); will be 1 for large i. Taking f; = a,
we see recursively that (1 — ac, ), can be expressed as a finite product of
powers of symbols of the form (1 — of, o), with i > 1.
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Let us fix an i and set i = i’¢" with i not divisible by ¢. Then /’ is
invertible mod /, and so by multiplicativity of the norm residue symbol we
have |

; ./ r e —1
(1—a,a)=(1— @), a) .

Now note that § = o' has the same form as «. That is, ( is an integer
multiple of ¢ times a primitive nth root of unity. It will therefore suffice to
show that (1 — oﬂr,a)l =1 forall »r > 0. If r =0, then Theorem 6(f) tells
us already that this symbol is 1. _

Now assume 1 <r <s (so s > 2). Note that

;
L= (gxQ)® =] ] = axiC.
=1

J=

So we need only show that (1 — gx(;€,gx(;); = 1 for every ¢*~!th root of
unity &. In this case,

(1 — gxGi€, gy = (1 — qx(i€, €))7

by Theorem 6(f). As in (9), we can apply reciprocity law (5) and equation
(4) to obtain

(10) (1 = gxGig, &)y = EWrtimaxen=b/L,
Here we have used the fact that (; is a Galois conjugate of (;¢. Note that
N(1 = gx() = @y(gx) = 1 mod g7 .

As qs_1 >2s—1 for s > 2 and g > 3, we conclude that the symbol in (10)
1s 1.
Finally, assume that r > s. We then have

(1 = (gxC)? , gx¢)r = (1 — (g0 , )1 — (g0, &y -

As both entries are rational, we have that (1 — (qx)qr,qx)l is an [th root of
unity which, by Theorem 6(h), is invarriant under the action of G, /Q, and
so must be 1. Furthermore, (1 — (gx)? ,(;); can be evaluated as in (10). Since
[K:Q]l=¢"!(g— 1), we have

NK(l _ (qx)qr) _ (1 . (qx)qr)qs—l(q_l) =1 mod qqr_|_s__1 '

Now we need only note that ¢" +s —1 > 25 for all r > s to finish the
proof. [
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This method is easily used to deal with the case of g =2, as most of the
proof carries over. We leave the proof to the reader. Extending this method,
the author has been able to compute the conductors which were used in the
first proof of the theorems (for all g) [Sh2].
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