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EVEN NON-SPIN MANIFOLDS,
SPIN¢ STRUCTURES, AND DUALITY

by Daniel ACOSTA and Terry LAWSON

ABSTRACT. This note explores the restrictions on the second Stiefel-Whitney class
wy of a smooth closed oriented 4-manifold which has an even intersection form but
is not spin. The Hom dual of w, is shown to be non-integral, whereas the existence
of a spin® structure means that its Poincaré dual is the reduction of an integral class.
We examine this in detail in a simple example S* x $*/{=%1}.

In [H, p. 23] N. Habegger gives M = S§* x §%/(x,y) ~ (—x,—y) as an
example of an oriented, non-spin smooth 4-manifold with an even intersection
form. In discussing this example in [K, p. 27] R. Kirby seems to be relating it
to the (non-)integrality of the second Stiefel-Whitney class w,(M). However,
for a closed, oriented, smooth 4-manifold X, it is always the case that the
second Stiefel-Whitney class w,(X) is the mod 2 reduction of an integral class.
This was first shown by Hirzebruch and Hopf in [HH, p. 169], and 1s a key
step in showing that X admits a spin® structure. Spin¢ structures have recently
become very important as they are involved in the Seiberg-Witten invariants,
now a major area of study in the topology and geometry of 4-manifolds
(see, e.g., [W], [T], [KM])).

In this expository paper we want to explore some of the interesting
phenomena at work in this example and describe the characterizing property
which w, possesses. On the way we shall encounter many important concepts
in geometric topology, including Poincaré and Hom duality, the intersection
form, even forms, spin structures, spin¢ structures, and characteristic classes.
The article is intended for readers who have a background of a year-long
graduate course in topology from a text such as Bredon [B].

We start by reviewing some basic definitions. We will assume X is a
compact, oriented smooth 4-manifold. When the coefficient group is not
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written, it 1s assumed to be the integers. There are two forms of duality available
which we will use. First, Poincaré duality asserts that cap product with the
fundamental class [X] € H4(X) gives an isomorphism D : H*(X) — Hy(X).
There is a similar isomorphism when we use Z, coefficients which we
will also denote by D. For coefficient group Z, there is an isomorphism
H : H*X;Z,) — Homg, (HZ(X; Zz),Zz) with image the dual space of the
vector space H,(X;Z,) over the field Z,. A basis b;,...,b, of a finite
dimensional vector space V determines an isomorphism between V and its
dual V* by sending b; to the homomorphism B; which sends b; to 1 and
bj to O for j # i. The elements B; and b; are said to be Hom duals. This
isomorphism depends on a choice of basis. However, if we are given any
elements b € V, B € V*, with B(b) = 1, then we can always extend b = b,
to a basis of V so that b is the Hom dual of B — just extend b to any
basis and then subtract off appropriate multiples of b to get B to evaluate 0
on the other basis elements. The composition of the isomorphism H and the
isomorphism determined by the basis gives an isomorphism

H : H*(X;Z,) ~ Homg, (H>(X; Z»), Z,) ~ Hy(X; Z>)

which will be called Hom duality. We will call x € Hy(X;Z,) a Hom dual
of h € H*(X;Z,) if H(h)(x) =.1 since we can always choose a basis of
H>(X;Z,) so that H(l’l) = X.

We next explore briefly the notions of an even intersection form, spin
structure, and spin® structure for a compact, oriented smooth 4-manifold X.
For more details see [B, p. 366-378], [K, p. 20-26, 33-37], [A, p. 95-101],
[M, p. 20-25]. The intersection form H,(X) X Hy(X) — Z 1is defined by
using the intersection product a-b of two homology classes. If the homology
classes are represented by smoothly embedded oriented surfaces A, B (i.e. the
inclusion maps induce (i4)«[A] = a, (ip)«[B] = b), then a-b may be computed
by perturbing A, B up to isotopy to be transversely embedded and summing up
the intersections with signs 41 according to whether the orientation framing
of A followed by the orientation framing of B agrees or disagrees with the
orientation framing of X [B, p. 375]. It is always the case that a 2-dimensional
homology class in an oriented 4-manifold may be represented by an embedded
surface [K, p. 20]. The product a-b may also be computed using Poincaré
duality as a-b = a U G[X] = «a(b), where Da = a,D = b. There are
similar formulas with Z, coefficients. A two dimensional Z, homology class
is not always represented by an embedded oriented surface, but it always may
be represented by an embedded nonorientable surface [G, p. 165-166], and
there is a similar interpretation of the intersection form in terms of counting
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geometric transverse intersections. The map Hy(X) — H>(X;Z,) is surjective
exactly when every Z, homology class can be represented by an orientable
surface.

The universal coefficient sequences with integral and Z, coefficients lead
to the following diagram.

0 — Ext(H(X).Z) — HXX:Z) % Hom(Hy(X),Z) — 0

l | L I

0 — Ext(H(X),Zy) — H*(X;Zy) —2 Hom(Hy(X),Zy) — 0

The homomorphisms #; and h, are related to the intersection form:
hi(a)(b) =a-b, h(a)(b)=a-b mod?2

where D(a) = a with either Z or Z, coefficients. The homomorphisms p;
come from reduction mod 2. The intersection form is called even if x-x
is an even number for all x € H,(X). An integral class a € Hy(X) so that
a-x = x-x mod?2 for all x is called characteristic for the intersection
form. a is characteristic if the homomorphism S(x) = x-x mod 2 1is the
image of a under the homomorphism k: H(X;Z) — Hom(H>(X), Z,) where
k(a)(x) = a-x mod 2. If a is a characteristic class, and « is its Poincaré
dual, then Aj(a)(x) = a-x = x-x mod 2. Thus a is characteristic iff its
Poincaré dual « satisfies hpp1(c) = pohi(a) = S. Since the form is even iff
S = 0, this means that the form is even iff for a characteristic, Da = a, then
hy (pi1(@) = 0.

The existence of characteristic classes uses the nondegeneracy of the
intersection form and Poincaré duality with Z, coefficients. The intersection
pairing Hy(X;Z) X Hy(X;Z) — Z factors through I' x I' — Z where
I' = Hy(X;Z)/Tors, and when we reduce mod 2, through T’ x I, — Z,
where I, = I'®Z,. The existence follows from I' — I, being surjective and
I'y — Hom(I;,Z,) being an isomorphism. For this last isomorphism, note
both sides are Z,-vector spaces and have dimension equal to rank H,(X;Z).
The 1somorphism is established once the map is seen to be injective. This
follows from the fact that the intersection form is nondegenerate due to
Poincaré duality : for each v,Jdw with w-v =1 in fact, w = Dvy where
is the Hom dual of v :

w-v=DY-v=HW)(w)=1.

The second Stiefel-Whitney class w,(X) € H*(X;Z,) belongs to a family
of characteristic classes. A good reference for properties of the Stiefel-Whitney
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classes and characteristic classes in general is [MS]. For our discussion here
we need to know three of its properties. First, it is related to the characteristic
classes discussed above in that its Poincaré dual D(w,(X)) satisfies the
characteristic property for the Z, intersection form :

H(wy(X)) (2) = D(we(X)) - z2=2"2

for all z € Hy(X;Z,). When we restrict to the image of integral classes, we get
the statement that A, (wy(X)) (x) = x-x mod 2. This means that if D(ay) is
an integral characteristic class, then h, (w, —p1(ay)) = 0. The second property
that w,(X) satisfies is that an oriented manifold X has a spin structure iff
wy(X) = 0. A spin structure on X is a lifting of the structure group of the
tangent bundle of X from SO(4) to its universal (double)cover spin(4). The
third property which w,(X) possesses relates to spin¢ structures. The group
spin(4) is the double cover spin(4) x St/ 41 of SO(4) x S' induced from
the double cover on each factor. A spin¢ structure on X consists of a lifting
of the structure group of the product of the tangent bundle of X and a chosen
line bundle L over X from SO(4) x S! to spin‘(4). The 4-manifold X has a
spin€ structure exactly when the second Stiefel-Whitney class w,(X) = p1(a)
for some integral class o ([HH, p. 169], [M, p. 25]).

We now give the argument why w,(X) always lifts to an integral
class from the excellent expository account of Seiberg-Witten invariants
by S. Akbulut [A, p. 95]. We saw above that the existence of an in-
tegral characteristic class means there is an integral class «; so that
hy (wg(X)—pl(al)) = 0. Hence w;, — p1(c;) comes from Ext(Hl(X), Z2) . But
the map EXt(H1 (X), Z) — Ext(H1 (X), Zz) 1s surjective since the first group
gives the torsion subgroup of H;(X) and the latter the 2-torsion subgroup.
Hence Jap € Ext(H(X),Z) — H*(X;Z) with pi(cn) = wy — pi(ey). This
implies wy = p1(a; + ay) is the image of an integral cohomology class. Note
that this also means that the Poincaré dual D(w,) is the image of an integral
homology class.

With this background, we return now to our initial example M. To see
that w,(M) # 0, Habegger [H] notes that if RP? = {[(x,x)]} is the image of
the diagonal A in S? x S? under the quotient, then [A]-[A] =2 in §? x §?
leads to [RP?]-[RP?] =1 in M. If [RP?] = Dy, where v € H*(M;Z,),
then we have (yU~)[M] = [RP?]-[RP?] = 1. Thus wry(M)U~y =~U~y #0,
which implies w,(M) # 0 and thus M is not spin.

Next note m(M) = Z, = H; (M) since M 1is double covered by
$? x §?. Using this and the computation of Euler characteristic as y(M) =
x(8? x §%)/2 = 2, Habegger shows rank Hy(M) = 0. Evenness of the
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intersection form follows. The universal coefficient sequences for M are:

O————>Z2—:—> 7, — s 0 — 0

Lk & |

O—)Zz——)Zz@Zz———>Z2—‘—"_>O

Consider the homology class Dw,. We claim that it is represented by the
embedded sphere which is the image under the quotient of S? x p or p x S
in $? x $2. Here p is a chosen point in §?, say (1,0,0). To see this, note
that (S x p) N A = (p,p) and the intersection is transverse. This gives us
[S?2 x pl, - [RP?] = 1 in M, and [S? x pl, is therefore a nonzero class in
H,(M;Z,) — the subscript 2 indicates that here we are viewing [S? x pl
as a Z, homology class rather than an integral class. This implies [S* X p]
must be nonzero in Ho(M) ~ Z,. Its Poincaré dual in H*(M) ~ Z, must
therefore be the unique nonzero class which reduces mod 2 to w,(M). This is
reflected in our commutative diagram. Evenness is reflected through the upper
right term being zero, and the image of w, to the Hom term being zero.
Exactness implies wy € Z, & Z; must come from the Ext term. Note that
under the isomorphism Z, ® Z, ~ H*(M;Z,) ~ Homgz, (HQ(M ; Zz),Zz),wz
maps to a nonzero homomorphism which evaluates zero on [S? x p], and one
on [RP?].

What is true here is that the class [RP?] in Hy(M;Z,) does not come from
an integral class. The evaluation of w, on [RP?] and [S? x p], distinguishes
these classes. Thus, these two surfaces generate Hy(M;Z,) = Z, ®Z, and the

1
| O> . We also note that

[RP?] cannot be represented by an oriented surface N. If it were, [N] would
represent an element of H,(M), and as we have seen, [RP?] is not in the
image of the homomorphism Hy(M) — H,(M;Z,) since the form is even.

How typical 1s this example ? First, if X has an even intersection form and
wy(X) # 0, then there must be a class a € Hy(X;Z,) with a-a # 0 detecting
wy(X) # 0 so that a does not come from an integral class. This class a can
be taken as a Hom dual of wy(X), not the Poincaré dual. In our example,
[RP?] is the Hom dual to wp(M) (using the basis [S? x p],, RP? to form
the duality) since H(w2(M)) (IRP?]) = 1 and H(w,(M)) ([S? x pls) = 0.
Of course, no such example can have Hy(X) — H,(X;Z,) surjective, which
implies X is not simply connected. Secondly, H,(X;Z,) is always represented
by embedded surfaces, orientable or nonorientable. All classes in the image

intersection form with respect to this basis is just <
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H>(X) — Hy(X;Z,) are represented by orientable surfaces. Thus, for X
even, non-spin, some classes in H,(X;Z,) will have only non-orientable
representatives, such as [RP?] in our example.
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