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EVEN NON-SPIN MANIFOLDS,

SPINC STRUCTURES, AND DUALITY

by Daniel Acosta and Terry LAWSON

Abstract. This note explores the restrictions on the second Stiefel-Whitney class

W2 of a smooth closed oriented 4-manifold which has an even intersection form but
is not spin. The Horn dual of W2 is shown to be non-integral, whereas the existence

of a spinc structure means that its Poincaré dual is the reduction of an integral class.

We examine this in detail in a simple example S2 x S2/{±1}.

In [H, p. 23] N. Habegger gives M S2 x S2/(x,y) ~ (-*, -y) as an

example of an oriented, non-spin smooth 4-manifold with an even intersection

form. In discussing this example in [K, p. 27] R. Kirby seems to be relating it
to the (non-)integrality of the second S tiefel-Whitney class However,

for a closed, oriented, smooth 4-manifold X, it is always the case that the

second Stiefel-Whitney class wo{X) is the mod 2 reduction of an integral class.

This was first shown by Hirzebruch and Hopf in [HH, p. 169], and is a key

step in showing that X admits a spinc structure. Spinc structures have recently
become very important as they are involved in the Seiberg-Witten invariants,

now a major area of study in the topology and geometry of 4-manifolds
(see, e.g., [W], [T], [KM]).

In this expository paper we want to explore some of the interesting
phenomena at work in this example and describe the characterizing property
which W2 possesses. On the way we shall encounter many important concepts
in geometric topology, including Poincaré and Horn duality, the intersection
form, even forms, spin structures, spinc structures, and characteristic classes.

The article is intended for readers who have a background of a year-long
graduate course in topology from a text such as Bredon [B].

We start by reviewing some basic definitions. We will assume X is a

compact, oriented smooth 4-manifold. When the coefficient group is not
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written, it is assumed to be the integers. There are two forms of duality available
which we will use. First, Poincaré duality asserts that cap product with the

fundamental class [X] G H^ÇX) gives an isomorphism D : H2(X) —> H2{X).
There is a similar isomorphism when we use Z2 coefficients which we
will also denote by D. For coefficient group Z2 there is an isomorphism
H : H2{X\ Z2) —> ¥Lomz2(H2(X;Z2),Z2) with image the dual space of the

vector space H2(X; Z2) over the field Z2. A basis b\,...,bn of a finite
dimensional vector space V determines an isomorphism between V and its
dual V* by sending bi to the homomorphism Bt which sends bt to 1 and

bj to 0 for j ß2 i. The elements Bt and bi are said to be Horn duals. This

isomorphism depends on a choice of basis. However, if we are given any
elements b G F, B G V*, with B(b) 1, then we can always extend b — b\
to a basis of V so that b is the Horn dual of B — just extend b to any
basis and then subtract off appropriate multiples of b to get B to evaluate 0

on the other basis elements. The composition of the isomorphism H and the

isomorphism determined by the basis gives an isomorphism

H : H2(X- Z2) ~ HomZ2 (H2(Z2),Z2) ~ ; Z2)

which will be called Horn duality. We will call x G H2(X\ Z2) a Horn dual
of h G H2(X\ Z2) if H(h) (x) 1 since we can always choose a basis of
H2(X\ Z2) so that H(h)=x.

We next explore briefly the notions of an even intersection form, spin

structure, and spinc structure for a compact, oriented smooth 4-manifold X.
For more details see [B, p. 366-378], [K, p. 20-26, 33-37], [A, p. 95-101],
[M, p. 20-25]. The intersection form H2(X) x H2(X) —> Z is defined by
using the intersection product a • b of two homology classes. If the homology
classes are represented by smoothly embedded oriented surfaces A, B (i.e. the

inclusion maps induce (iA)*[A] a,(iß)*[B] b), then a-b may be computed

by perturbing A,B up to isotopy to be transversely embedded and summing up
the intersections with signs ±1 according to whether the orientation framing
of A followed by the orientation framing of B agrees or disagrees with the

orientation framing of X [B, p. 375]. It is always the case that a 2-dimensional

homology class in an oriented 4-manifold may be represented by an embedded

surface [K, p. 20]. The product a • b may also be computed using Poincaré

duality as a • b a U ß[X] a(b), where Da a^Dß b. Ther.e are

similar formulas with Z2 coefficients. A two dimensional Z2 homology class

is not always represented by an embedded oriented surface, but it always may
be represented by an embedded nonorientable surface [G, p. 165-166], and

there is a similar interpretation of the intersection form in terms of counting
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geometric transverse intersections. The map H2(X) H2(X\Z2) *s surjective

exactly when every Z2 homology class can be represented by an orientable

surface.

The universal coefficient sequences with integral and Z2 coefficients lead

to the following diagram.

0 —> Ext(tfi(X),Z) —* H2{X\Z)Hom(tf2(X),Z) —» 0

1

0 — Ext(//j(X),Z2) — H2(X-Z2)Hom(//2(X),Z2) —> 0

The homomorphisms /zi and /i2 are related to the intersection form:

h\(a) (b) a • £>, /^(o) (b) a - b mod 2

where D(o) a with either Z or Z2 coefficients. The homomorphisms pt

come from reduction mod 2. The intersection form is called even if x • x
is an even number for all x G H2(X). An integral class a G H2(X) so that

a • x x • x mod 2 for all x is called characteristic for the intersection

form, a is characteristic if the homomorphism S(x) x • x mod 2 is the

image of a under the homomorphism k: H2(X\Z) —> Horn(//2(A), Z2) where

k(a)(x) a - x mod 2. If a is a characteristic class, and a is its Poincaré

dual, then h\(a)(x) — a • x — x - x mod 2. Thus a is characteristic iff its

Poincaré dual a satisfies h2p\{a) — p2^i(c0 S. Since the form is even iff
S 0, this means that the form is even iff for a characteristic, Da a, then

hi(pi(oO) 0.
The existence of characteristic classes uses the nondegeneracy of the

intersection form and Poincaré duality with Z2 coefficients. The intersection

pairing H2(X\ Z) x H2(X; Z) —> Z factors through T x T —> Z where

T H2(X;Z)/Tots, and when we reduce mod 2, through T2 x T2 —> Z2

where T2 T<g>Z2. The existence follows from T —> T2 being surjective and

r2 —> Hom(r2,Z2) being an isomorphism. For this last isomorphism, note
both sides are Z2-vector spaces and have dimension equal to rankH2(X;Z).
The isomorphism is established once the map is seen to be injective. This
follows from the fact that the intersection form is nondegenerate due to
Poincaré duality : for each v,3w with w*v 1 ; in fact, w Dip where ip
is the Horn dual of v :

w • v Dip • v H(ip) (v) 1.

The second Stiefel-Whitney class w2{X) G H2(X; Z2) belongs to a family
of characteristic classes. A good reference for properties of the S tiefel-Whitney
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classes and characteristic classes in general is [MS]. For our discussion here

we need to know three of its properties. First, it is related to the characteristic
classes discussed above in that its Poincaré dual D(w2(X)) satisfies the

characteristic property for the Z2 intersection form :

H(w2(X)) (z) D(wz z z

for all z G H2(X\ Z2). When we restrict to the image of integral classes, we get
the statement that h2(w2(X)) (x) — x x mod 2. This means that if D(a 1) is

an integral characteristic class, then h2(w2 — Pi(oq)) 0. The second property
that w2(X) satisfies is that an oriented manifold X has a spin structure iff
w2(X) 0. A spin structure on A is a lifting of the structure group of the

tangent bundle of X from SO(4) to its universal (double)cover spin(4). The

third property which w2(X) possesses relates to spinc structures. The group
spirf (A) is the double cover spin{4) x S1 / ± 1 of SO{4) x Sl induced from
the double cover on each factor. A spinc structure on X consists of a lifting
of the structure group of the product of the tangent bundle of X and a chosen

line bundle L over X from S0(4) x Sl to spirf (4). The 4-manifold X has a

spinc structure exactly when the second S tiefel-Whitney class w2(X) p\(a)
for some integral class a ([HH, p. 169], [M, p. 25]).

We now give the argument why w2(X) always lifts to an integral
class from the excellent expository account of Seiberg-Witten invariants

by S. Akbulut [A, p. 95]. We saw above that the existence of an

integral characteristic class means there is an integral class a\ so that

h2[w2(X) — p\(a\)) 0. Hence w2 — P\(ol\) comes from Ext(/£(A), Z2). But
the map Ext(/A(A), Z) —* Ext (/A (A), Z2) is surjective since the first group
gives the torsion subgroup of H\(X) and the latter the 2-torsion subgroup.
Hence 3a2 G Ext(/£(A), Z) ^ H2(A;Z) with p\(a2) w2 — p\(a.\). This

implies w2 p\(a\ +a2) is the image of an integral cohomology class. Note

that this also means that the Poincaré dual D(w2) is the image of an integral

homology class.

With this background, we return now to our initial example M. To see

that w2(M) ^ 0, Habegger [H] notes that if RP2 {[(Xx)]} is the image of
the diagonal A in S2 x S2 under the quotient, then [A] • [A] 2 in S2 x S2

leads to [RP2] • [RP2] - 1 in M. If [RP2] £>7, where 7 G H2(M; Z2),
then we have (7 U 7) [M] [RP2] • [RP2] 1. Thus w2(M) 0,
which implies w2(M) X 0 and thus M is not spin.

Next note tit(M) — Z2 H\(M) since M is double covered by
S2 x S2. Using this and the computation of Euler characteristic as x(M)
X(S2 x S2)/2 2, Habegger shows rank H2(M) 0. Evenness of the
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intersection form follows. The universal coefficient sequences for M are:

0 » Z2 —Z2 > 0 > 0

1 1" ip 1

0 > Z2 > Z2 ® Z2 » Z2 » 0

Consider the homology class Dw2 • We claim that it is represented by the

embedded sphere which is the image under the quotient of S2 x p or p x S2

in S2 x S2. Here p is a chosen point in S2, say (1,0,0). To see this, note

that (S2 x p) n A (p,p) and the intersection is transverse. This gives us

[S2 x p]2 • [RP2] 1 in M, and [S2 x p]2 is therefore a nonzero class in

H2{M\ Z2) — the subscript 2 indicates that here we are viewing [S2 x p]
as a Z2 homology class rather than an integral class. This implies [S2 x p]
must be nonzero in H2(M) ~ Z2. Its Poincaré dual in H2(M) ~ Z2 must

therefore be the unique nonzero class which reduces mod 2 to w2(M). This is

reflected in our commutative diagram. Evenness is reflected through the upper
right term being zero, and the image of w2 to the Horn term being zero.
Exactness implies w2 E Z2 ® Z2 must come from the Ext term. Note that

under the isomorphism Z2 ® Z2 ~ H2(M\ Z2) cx Homz2 (H2(M\ Z2), Z2), w2

maps to a nonzero homomorphism which evaluates zero on [S2 xp]2 and one

on [RP2].

What is true here is that the class [RP2] in H2(M; Z2) does not come from
an integral class. The evaluation of w2 on [RP2] and [S2 x p]2 distinguishes
these classes. Thus, these two surfaces generate H2(M\Z2) Z2®Z2 and the

intersection form with respect to this basis is just ^ j ^ We also note that

[RP2] cannot be represented by an oriented surface N. If it were, [N] would
represent an element of H2(M), and as we have seen, [RP2] is not in the

image of the homomorphism H2(M) —> H2(M\ Z2) since the form is even.

How typical is this example First, if X has an even intersection form and

w2(X) ^ 0, then there must be a class a G H2(X; Z2) with a • a ^ 0 detecting
w2(X) ^ 0 so that a does not come from an integral class. This class a can
be taken as a Horn dual of w2(X), not the Poincaré dual. In our example,
[RP2] is the Horn dual to w2(M) (using the basis [S2 x p]2,RP2 to form
the duality) since H(w2{M)) ([RP2]) 1 and H(w2(M)) ([S2 x p]2) m 0.
Of course, no such example can have H2(X) —> H2(X\ Z2) surjective, which
implies X is not simply connected. Secondly, H2{X\ Z2) is always represented
by embedded surfaces, orientable or nonorientable. All classes in the image



32 D. ACOSTA AND T. LAWSON

H2(X) —> H2(X\7j2) are represented by orientable surfaces. Thus, for X
even, non-spin, some classes in H2(X\7j2) will have only non-orientable

representatives, such as [RP2] in our example.

REFERENCES

[A] Akbulut, S. Lectures on Seiberg-Witten Invariants. Proceedings of the Gökova
Geometry-Topology Conference 1995. 1996, 95-118.

[B] Bredon, G. Topology and Geometry. Springer Verlag, New York, 1993.

[H] Habegger, N. Une variété de dimension 4 avec forme d'intersection paire et

signature —8. Comm. Math. Helv. 57 (1982), 22-24.
[G] GORDON, C. On the G-signature theorem in dimension four. A la recherche

de la topologie perdue, 159-180. Progr. Math. 62. Birkhäuser, Boston,
1986.

[HH] HiRZEBRUCH, F. und H. Hopf. Felder von Flächenelementen in 4-dimensionalen
Manigfaltigkeiten. Math. Annalen 136 (1958), 156-172.

[K] KlRBY, R. The Topology of 4-Manifolds. Springer-Verlag, Berlin Heidelberg,
1989

[KM] Kronheimer, P. and T. Mrowka. The genus of embedded surfaces in the

projective plane. Math Research Letters 1 (1994), 797-808.

[M] MORGAN, J. The Seiberg-Witten Equations and Applications to the Topology of
Smooth Four-Manifolds. Mathematical Notes, Princeton University Press,
1995.

[MS] MlLNOR, J. and J. STASHEFF. Characteristic Classes. Princeton University Press,
1974.

[T] Taubes, C.H. The Seiberg-Witten invariants and symplectic forms. Math.
Research Letters 1 (1994), 809-822.

[W] WITTEN, E. Monopoles and Four-Manifolds. Math. Research Letters 1 (1994),
769-796.

(Reçu le 26 août 1996)

Daniel Acosta

Department of Mathematics
Marshall University
Huntington, WV 25755
U.S.A.

E-mail: acosta@marshall.edu

Terry Lawson

Department of Mathematics
Tulane University
New Orleans, LA 70118
U.S.A.

E-mail: tcl@math.tulane.edu


	EVEN NON-SPIN MANIFOLDS, SPINc STRUCTURES, AND DUALITY
	...
	...
	...


