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As the function field of some curve, k(n) is an algebraic extension of k(?);
hence it is also C; ([La], pp. 376-377). So, every conic defined over k(7))
has points defined over this field and is birationally equivalent to P,i(m. This
shows that k(n)(I',) is isomorphic to k(n)(?). Therefore we have the following
k-isomorphisms:

K(T) = k(n)(Ty) ~ k(n)(®) = k(B x P1).

Hence there is a birational equivalence ¢: B X P!——— 7. Consider the
composite rational map ¢ = p o ¢: B x P! ——— X. Since ¢ is dominant,
and X projective, we know (cf. [Sh], Chap. 3, §5, Thm. 2) that g* embeds
the regular differentials (of any rank) on X into those on B x P!.

Since X is a K3 surface, we note that wy is trivial, and hence h%(wy) = 1.
On applying g* we see that h°(B x P!, wp,p1) # 0. But this is impossible.
Indeed, if we denote by p; and p, the projections from B x P! to B and P!
respectively, we have: |

wpxp = Piwp @ prwpi -
On the other hand, H°(P',wp) = H°(P',Opi(—2)) = 0, and for quasi-
coherent sheaves the global section functor commutes with tensor products;
a contradiction. [

REMARK. Lemma 1.1 does not imply that a given K3 surface cannot
contain infinitely many smooth rational curves; see [SwD], § 5, for an example.

2. ABOUT EXISTENCE

Finiteness statements are useless if they are not accompanied by some form
of existence assertion. After all, zero is also a finite number! In the present
section we show the existence of irreducible rational curves, of degree 8 or
12, at least on some smooth quartic surfaces. For degree 8 there is a very
elementary proof, and we give it first. Then we shall proceed to the case of
degree 12, which requires some more elaborate machinery.

As mentioned above, on a quartic surface it is easy to find some reducible
curves of degree 8 with nine double points by considering unions of two plane
sections. Such curves are even infinite in number, but they do not lie on any
smooth quadric.*) That is why we start with a very explicit construction on

4) By the way, this may be one reason for working with the Chow variety rather than with
a Hilbert scheme. These degenerate cases have the same arithmetic genus, but they do not lie
in Rg .
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the smooth quadric S which is the image of the standard Segre embedding
o: P! x P! — P’
(o x1). Go 2 yn)) = (X2 Y 2 Z 2 W) = (xoyo : Xoy1 = %1)0 L xX1y1) -
Thus S is given by the equation

GX.Y,ZW)=XW-YZ=0.

LEMMA 2.1. Let p: P! — P! x P! be the map defined by
pr(u:t)— ((u4 - 1. (u4 W+ T‘L)) :

Then p is an injective morphism, whose image is an irreducible rational curve
T of type (4.4). Under the standard Segre embedding, U is the intersection
of S with the quartic surface T defined by

FX.Y.ZW)={ -2 -XZ=0.

Of course, T is a cone with vertex P = (0 :0:0: 1) and has a triple
line £ = {X =Y —Z=0}. However, T is also the intersection of S with a
smooth quartic surface of the form F+ H -G =0 for some quadratic form
HX.Y.Z. W).

Proof. All the assertions are easy to verify. I' has a unique singularity
(at P), whose effect on the genus is the equivalent of nine double points. As
for the last assertion, we state it in more general form:

LEMMA 2.2. Let I C P? be the complete intersection of two surfaces
defined by F = 0, respectively G = 0. We assume that the surface defined
by G =0 is smooth, that T is reduced, and that degF > deg G. Then there

exists a smooth surface among those with equation F+ H -G = 0, where
deg H = deg FF — deg G.

Proof. By a theorem of Bertini, the linear system determined by F and
by all polynomials of the form H -G has no movable singularity in P? outside
its base locus. As H runs through the set of all forms of the relevant degree,
the base locus is reduced to the points on I' = {F = G =0}.

Now, if P 1s a singular point of F 4+ H -G = 0 in the base locus, we
see that dF(P) + H(P) - dG(P) = 0. We can think of this as a system of
four equations in one variable x = H(P). But the rank of the Jacobian matrix
(F'.G")p at P is equal to 1 or 2 (0 is ruled out because the surface defined
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by G =0 is smooth). If it is equal to 2 then there is no suitable x; hence
P is not singular for any H.

When the rank is equal to 1, there is a unique solution and we get one
linear condition in the affine space of the coefficients of H. However, this
occurs only at the finitely many singular points of I'. Since a finite union
of hyperplanes does not exhaust the space of parameters, we can choose H
so that 1its coefficients lie outside this union. For any such H, the surface
F+H-G =0 is smooth on the whole of I". [

As a further illustration, we show how to produce an example with nine
distinct double points.

LEMMA 2.3. Let p: P' — P! x P' be the map defined by
pi(u:t)— ((u4 Ut e+ ), W+t ud ut 1Y)

Then p is a generically injective morphism, whose image is an irreducible
rational curve U of type (4,4) with precisely 9 distinct ordinary double
points. Under the standard Segre embedding, 1" is the intersection of S with
a smooth quartic surface.

Proof. In view of Lemma 2.2, the main thing to do is to study
the singularities of p. To this effect, we note that a polynomial map

po: Al — P! x P! defined by
po: t— ((@o(0) : @1(D), (Yo(0) : Pi(1))

fails to be injective when we have the following simultaneous equalities

©1(1) _ ©1(7) and P (1) _ Y1 (7)
wo(t)  @o(T) Po(t)  Yo(T)
for two different values ¢t and 7. Therefore we define

_ po(mpi () — 1(1)po(1)
B t—T

e Clrll1]

a(t)

and

Po(T)1h1(1) — Y1 (T)ho(1)

I—T

B(t) = e C[7][1].

Then py fails to be injective if, after fixing 7, there exists ¢ # 7 such that
a(t) = B(t) = 0. This involves studying the resultant R(7) of a(r) and [(z)
over C[7]. If py is generically injective then R(7) is not identically zero. With
our assumptions, it is a polynomial of degree < 18, whose roots describe
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the 9 pairs of points that are mapped to the double points of . In fact, the
degree is equal to 18 if we work projectively and consider p instead of po.
In the present case we obtain R(7) = (72 + 1)(r* + D)g(1), where

gr) =712 43710 1878 1 277 4 1170 + 677 + 97* + 87 + 677 + 47 + 1.

This is a decomposition into Q-irreducible factors; hence all the roots are
distinct. Furthermore, the degree is equal to 18, which means that the image
of the point at infinity is smooth. (For the example of Lemma 2.1, one obtains
R(7) = 1, which means that the whole singularity is concentrated at the image
of the point at infinity.) [

The approach we have taken for these examples can also serve to prove
some general statements :

LEMMA 2.4. The rational, reduced and irreducible curves of bidegree
(11, ) on a smooth quadric in P* are parametrized by an irreducible quasi-
projective variety R, C Ry, of dimension 2m — 1, where m = pu+ v.
A general point on R, , corresponds to an irreducible curve whose only
singularities are distinct nodes.

Proof. Any smooth quadric surface is isomorphic to P! x P'. Further,
a rational irreducible curve of bidegree (u,r) on P! x P! is the image of
amap p: P! — P' x P!, where p = ((¢o : 1), (%o : ¢1)) consists of two
pairs of homogeneous polynomials, respectively of degree p and v, varying
independently. These maps are parametrized by points of P +1 x p2+!,

This defines an incidence correspondence 7 , with base the open subset V
of P21 x P2+ which parametrizes those p which are generically injective
and for which p(P') is of bidegree (u,v). Indeed, the condition that p be
“many-to-one” 1s equivalent to the vanishing of some resultant polynomial (as
in the proof of Lemma 2.3). ;

The argument given in [Co2], Lemma 2.4, shows that 7 is irreducible and
that there is a correspondence between V and an irreducible subvariety R, ,
of R,, which defines the same curves as V. As the oo’ automorphisms of
P' do not modify the image of a map, the dimension of R, 1s equal to
Cp+ 1D+ QRv+1)—-3=2m—1, provided R, , is nonempty.

For = v =4 this is shown by Lemma 2.1, and the last assertion of the
lemma follows from Lemma 2.3.

For the general case, we refer to [Ta], as in Lemma 2.5 below. More
precisely, take 2 < p < v and assume by induction the existence of a nodal,
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irreducible, rational curve Y; of bidegree (u—1,v). Let Y, be a line of type
(1,0) avoiding the (u — 2)(r — 1) nodes of Y;. We can also assume that it
meets Y; in exactly v distinct points. Assign v — 1 of these, in addition to
the nodes of Yi. This set of (u — 1)(r — 1) nodes makes Y; + Y, virtually
connected, as desired.  []

We also know from Lemma 2.2 that any reduced curve of type (u, ) lies
on a smooth surface of degree u, a fact that will play an important role later.

It 1s difficult to pursue such an explicit approach for the case where h = 3,
because the smooth cubic surfaces are not all alike. We therefore switch to
the method of Tannenbaum [Ta]. His results, which are based on deformation
theory, provide the existence — under precise conditions — of rational, reduced
and irreducible curves, parametrized by an algebraic scheme. Unfortunately,
they fail to apply on surfaces which are not rational. That is why we cannot
immediately generalize our results to the intersections of a quartic with surfaces
of degree higher than 3.

LEMMA 2.5. Any smooth cubic surface F C P* carries (for any positive
integer \) a rational, reduced and irreducible curve 1"y of degree 3\ having
only nodes for singularities, which belongs to the linear system |Xx| cut out
by all surfaces of degree ).

Proof. Since the surface F is rational, we can use the results of
Tannenbaum ([Ta], §2). The proof is by induction on A.

For A =1 we consider the intersection I'p of F with its tangent plane at
any point P that does not lie on any of the 27 lines. Then I'p is irreducible.
If P is sufficiently general then I'p has a node at P. Indeed, one also obtains
a node with the plane sections of F' that degenerate into the union of a line
and a smooth conic. Thus there are many ways to choose I'p; we shall use
this co”-freedom in the rest of the proof.

Now suppose the result true for A. We prove it for A + 1. Thus we
assume that there exists a rational, reduced and irreducible curve I'y € |X,|
with p,(I'y) = 31\%ﬂ+1 distinct nodes, as the genus formula shows. (Indeed,
F is embedded in P? by its anticanonical sheaf.)

We apply [Ta], Prop. 2.11, to the reduced curve ¥ =1, UI'p, where I'p
is a sufficiently general rational plane section. Then the 3\ intersection points
of I'y with I'p are among the nodes of Y, which therefore totals

:3)\_()\;1_)+1_}_3)\_{_]:3M+

2
2 2

6
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nodes. Of course Y belongs to |X)4+;| and we may assign 5=056—1 of the
nodes, leaving out only one of the intersection points of T'y with I'p.

In this way we obtain a flat family Q) relative to which these nodes are
assigned; and Y is virtually connected with respect to ), in the sense of
[Ta], Def. 2.12. Thus we can apply [Ta], Thm. 2.13, to deduce that a generic
‘member of Xyp1| with 6 = 3§A2—+1—) + 1 nodes is irreducible. By the genus
formula, such a curve is rational. [

With this existence result we can now state the analogue of Lemma 2.4
for cubics.

LEMMA 2.6. The rational, reduced and irreducible curves, of degree
m = 3\, belonging to the linear system |Xx| on a smooth cubic surface
F C P? and having only nodes for singularities are parametrized by a quasi-
projective, equidimensional scheme Wy C R,, of dimension m — 1.

Proof. We apply [Ta], Lemma 2.2, to the rational, reduced and irreducible
curve Y = T, € |X,| of the preceding lemma, which has precisely
0 = p(Y) = BW + 1 nodes and no other singular points. Further,
BO(Y) = pa(Y) +degY (cf. [Col], Lemma 1).

We derive the existence of a smooth irreducible algebraic k-scheme
Vs(IXy|;Y), of dimension dim|Xy| — & = W) — 1 — p(Y) = m — 1,
parametrizing reduced curves in |X,| with precisely 6 nodes and no other
singularities which are flat deformations of Y in F. Of course, a general
curve of Vg(|X,|;Y) is irreducible.

Let ) C Vs X F be the universal Cartier divisor of the flat family. Since
Vs x F is smooth, we can regard ) as a Weil divisor, and hence as an
incidence correspondence in this product. We prove that ) is irreducible.
Indeed, since %) 2, Vs is flat, and every fibre 1s one-dimensional, it follows
from [Hart], Chap. 3, Cor. 9.6, that every irreducible component %); of 2
has dimension equal to dim Vs + 1. Now, Vs is irreducible, so ¢(2);) = Vs
for every i. But the generic fibre of ¢ is irreducible. Hence i = 1.

We denote by )’ the open dense subset of ) corresponding to the
irreducible curves, and let Vi = (). We now apply [H-P], Chap. 11,
§6, Thm. II, to Q) and conclude that there is an irreducible incidence
correspondence 7 between Vi and an irreducible subvariety Wy C R
which defines the same curves as Vj.

Since every curve parametrized by Vjs is reduced, we have dimWy, =
dim V§. Taking all possible irreducible Y € |X,|, we get irreducible varieties

m s
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Wy parametrizing all rational, reduced and irreducible curves belonging to
|X| and having only nodes for singularities. We define W, as the union of
these varieties Wy. [

REMARKS. 1) The schemes parametrizing all curves of a given geometric
genus, in a linear system on a rational surface, have been well examined (see
[Ta], [Ha]). The new feature in Lemma 2.6 is that we “pull them up” to
subschemes of the Chow variety R,,.

2) We can think of a smooth cubic surface as being P? with six points
blown up. Then, if we consider the effect of blowing-down on the curves of
the linear system |X,|, we see that Lemma 2.5 has the following interesting
consequence: in the system of plane curves of degree 3\ with six A-fold
points, there are some rational, reduced and irreducible curves with only nodes
as further singularities.

3. RATIONAL CURVES ON QUARTICS IN P?

A rational space curve of degree 8 is given as the image of a map
@: P! — P3 defined by four homogeneous polynomials of degree 8. Such
maps depend on 4-9 = 36 arbitrary coefficients; hence they are parametrized
by P%. Those maps which are generically injective and for which o(P') is
a curve of degree 8 correspond to an open subset U C P¥. By ¢ € U we
mean that the coefficients of ¢ are in U.

Such a curve I' is contained in at most one quadric Q. So, it will be
convenient to consider the pair (I', Q) instead of I' alone. For simplicity, we
shall restrict to the case where Q is smooth. We denote by Ly (resp., Lc
and Lg) the quasi-projective variety of smooth quadrics (resp., cubics and
quartics) in P,

LEMMA 3.1. The following correspondences between quasi-projective
varieties are algebraic and define closed subvarieties :

a) the incidence correspondence G C Rg x Lo parametrizing the rational
curves of degree 8 on smooth quadrics,

b) the incidence correspondence F C Rg X Lo X Lk parametrizing the
rational, reduced and irreducible curves of type (4,4) on smooth quadrics
which are cut out by smooth quartic surfaces,

c) the incidence correspondence H C Rg X Lo X Fi parametrizing the |
rational, reduced and irreducible curves of type (4,4) on smooth quadrics. J
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