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NONMINIMAL RATIONAL CURVES
ON K3 SURFACES

by Daniel CORAY, Constantin MANOIL and Israel VAINSENCHER

INTRODUCTION
The following assertion was made, in 1943, by B. Segre ([Se]):

(S) The general quartic surface F contains a finite number ¢, > 0 of
unicursal (i.e., rational) curves of degree 4h (for h=1,2,3,...).

This was prompted by the opposite claim made by W. Fr. Meyer at the
turn of the century ([Me], §3, pp. 1545-47):

(M) On a generic (quartic surface) F4 there can lie no (rational curve)
R, (im=1,2,...).

The notation R,, was commonly used to mean: a rational curve of
degree m, but it is not clear whether Meyer intended to limit his statement to
smooth rational curves. In fact, the argument he gives in support of his claim
makes reasonable sense for smooth curves: it takes 4m 4 1 conditions to
express that a quartic surface contains a smooth rational curve of degree m,
but these curves depend on 4m constants only. Indeed, a parametrization
©: P! — P3 defined by four homogeneous polynomials of degree m depends
on 4(m+1) coefficients, which are arbitrary up to multiplication by a common
scalar; and the oo’ automorphisms of P! preserve the image of such a map.

The independence of the conditions so expressed would need to be
thoroughly examined. But, with this interpretation, assertion (M) does hold
and can be derived from a celebrated theorem of Max Noether, which is very
well established (see [De], thm. 1.2): a generic quartic surface (in a specific
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sense) has no other divisors than its hypersurface sections; and the arithmetic
genus of such divisors is never zero.

Nevertheless, as Segre noticed, Meyer’s statement is certainly false when
singularities are allowed. Indeed, it is well-known that a general quartic surface
in P? has 3200 tritangent planes. Each of them meets the surface in a quartic
with 3 double points, which has geometric genus zero.

It is interesting to compare with a similar statement proved in 1979 by
Mumford and by Bogomolov (see [M-M]):

THEOREM (Bogomolov & Mumford). Every algebraic K3 surface over C
contains a singular rational curve and a pencil of singular elliptic curves.

Actually, they proved that a complete linear system of curves of minimal
arithmetic genus (greater than one) on the surface contains at least one irre-
ducible rational member. For a smooth quartic in P?, which is a special case
of K3 surface, this deals with the relatively uninteresting case where 7 =1.

Assertion (S) would be easy to establish if we knew that every complete
linear system of curves of arithmetic genus greater than one on a K3 surface has
an irreducible rational member. The main innovation of this paper is that, for
a restricted family of K3 surfaces, we show the existence of singular rational
irreducible members in some complete linear systems which are not minimal.

More precisely, we give a proof of Segre’s assertion (S) for # =2 and
h = 3 (Theorem 3.4). In §4 we establish a similar result for K3 surfaces
in P* (Theorem 4.1). However, for reasons explained before Lemma 2.5, we
have not been able to prove assertion (S) for 4 > 3.

SCHOLIA. What happens in reality is somewhat surprising. Sometimes the
problem seems to be very easy, and sometimes very hard. We shall try to
explain here why this is so. :

First we recall that the set of space curves of a given degree can be viewed
as a variety, by a construction usually attributed to Chow, though much of
the idea goes back to Cayley ([Ca]). (See [Sh] for a brief, but enlightening
discussion, and [H-P] for an almost exhaustive treatment.)

In a few words, let V C P" be a projective variety of dimension n. We
denote by PV the dual space of PV and consider the set A C (PV)Y"F! x V
of all points (hg,...,h,,x) such that every hyperplane h; contains x. One
can prove (cf. [Sh], Chap. 1, §6) that A 1s a closed set whose projection
in (PM)**! is defined by a single equation Fy. The form Fy is called the
Cayley form associated with V, and its coefficients are the coordinates of the
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Chow point of V. If — instead of looking merely at varieties — one considers
all cycles of a given degree m and dimension 7, one shows that the Chow
points form a projective algebraic variety. This is called the Chow variety of
all cycles in PV of degree m and dimension n.

SCHOLIUM 1. It is known that the Chow variety of space curves of
degree m has an irreducible component R,,, of dimension 4m, whose general
element is the Chow point of a smooth rational curve (¢f. [Co2], Lemma 2.4).
Moreover, any irreducible space curve with degree m and geometric genus
zero belongs to it.

We denote by Fx the projective space (of dimension 34) parametrizing all
quartic surfaces in P?. For each value of m, we can consider the incidence
correspondence Z,, C R,, X Fx consisting of all pairs (v, F) with (v) C F,
where () denotes the support of the 1-cycle whose Chow point is v € R,,.

Now a smooth quartic curve I" of genus 0 in P® is contained in a unique
quadric surface. From this it is easy to compute that it is contained in precisely
oo’ surfaces F € Fx. (The 17 conditions coming from the Bézout theorem
are independent; indeed, given any set of 16 points on I', there is a union
of two quadrics through them which does not contain T".) Thus the incidence
correspondence 7, has dimension 16 + 17 = 33 above some nonempty open
subset of R4.

But if we look at the family of plane quartics in P?, we see that its
dimension is 14 + 3 = 17 (one more than the dimension of R4 !). It can
be shown that those having 3 double points form a family of dimension
(14 —3) +3 = 14. Now, for a quartic surface to contain such a singular
curve I, it is enough to impose 11 simple points and the 3 double points,
since this also represents 11+2-3 = 4-441 intersections. Thus I' is contained
in 002?0 surfaces F € Fx. It follows that the incidence correspondence 74
has a component of dimension > 14 + 20 = 34 above the singular plane
quartics. ')

Hence not only is 7, reducible, but it has a component of larger dimension
than its dimension over the generic point of the Chow variety R, !

_ ") In fact, equality holds. The referee suggests the following argument: as a complete
intersection, any plane quartic is arithmetically Cohen-Macaulay of arithmetic genus 3. Therefore
it imposes exactly h%(Or(4)) = 14 conditions on quartic surfaces.

~ There is also a family of rational curves of degree 4 and arithmetic genus 1, namely the
rational reduced and irreducible quartic curves which are complete intersections of two quadric
surfaces (and have a double point). These curves are contained in co!® surfaces of degree 4.

As a matter of fact, this family of curves S C R4 has dimension 15. So, the fibres above
S span a 33-dimensional variety, which is also a component of Zy.
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This explains why we can say that both Segre and Meyer were right, in
some sense : they referred to the images in Fx of different components of Z,,.

We proceed with an informal discussion of the case & = 2, for which one
can also get a pretty clear picture :

SCHOLIUM 2. We refer to Max Noether ([No], §17) for a discussion of
space curves of degree 8. Noether uses several criteria?) to establish that a
general smooth rational octic I" is contained in no more than two independent
quartic surfaces?®) F,. Thus the incidence correspondence Zg has dimension
32+ 1 = 33 above some nonempty open subset of Rg and could not possibly
map surjectively onto Fx if it were irreducible. This is in agreement with
Meyer’s assertion for degree 8.

However, the complete intersections of a quartic and a quadric have the
right dimension (33, which is one more than dim Rg). Our task will consist in
showing that those with 9 double points form a subfamily of Rg of dimension
33 —9 = 24. Again, since these curves are contained in oo!® quartic surfaces,
we have to do with a component of larger dimension than the one above the
general point of Rg. We will then show that this component maps onto a
dense constructible subset of Fx.

Here is yet another heuristic way to understand why the dimension is one
more than normally expected: In Zg one can obtain a curve 1" with 9 double
points by imposing only 8 nodes.

Indeed, any quadric passing through the 8 nodes and one more point of T’
has 2-8+1 = 17 intersections with I'. Hence I' is contained in an irreducible
quadric Qp.

Since we are moving in Zg C Rg X Fg, the divisor I' is of type (4,4)
on Qgp, hence of arithmetic genus 9. But I' is rational and the assigned
singularities are ordinary double points. Hence I' automatically acquires a
ninth singular point.

2) For instance, on a smooth quartic F containing I', any other quartic surface F’
through I' cuts out a residual curve I”. The linear system |I’| has dimension 0. Indeed,

pa(D) = 0= (I? = —2; whence (I")?> = (O4) —T)? = —2, so that I is an isolated divisor.
Hence any other quartic through T" belongs to the pencil generated by F and F’.

3) One cannot leave out the word ‘general’. Indeed one also finds some smooth rational
curves of degree 8 on any smooth quadric, where they correspond to the divisors of type (1,7).

These curves are therefore contained in co® (reducible) surfaces of degree 4.

As a matter of fact, this family of curves S C Rg has dimension 24. So the fibres above
S span a 33-dimensional variety, which is also a component of Zg.
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