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NONMINIMAL RATIONAL CURVES
ON K3 SURFACES

by Daniel CORAY, Constantin MANOIL and Israel VAINSENCHER

INTRODUCTION
The following assertion was made, in 1943, by B. Segre ([Se]):

(S) The general quartic surface F contains a finite number ¢, > 0 of
unicursal (i.e., rational) curves of degree 4h (for h=1,2,3,...).

This was prompted by the opposite claim made by W. Fr. Meyer at the
turn of the century ([Me], §3, pp. 1545-47):

(M) On a generic (quartic surface) F4 there can lie no (rational curve)
R, (im=1,2,...).

The notation R,, was commonly used to mean: a rational curve of
degree m, but it is not clear whether Meyer intended to limit his statement to
smooth rational curves. In fact, the argument he gives in support of his claim
makes reasonable sense for smooth curves: it takes 4m 4 1 conditions to
express that a quartic surface contains a smooth rational curve of degree m,
but these curves depend on 4m constants only. Indeed, a parametrization
©: P! — P3 defined by four homogeneous polynomials of degree m depends
on 4(m+1) coefficients, which are arbitrary up to multiplication by a common
scalar; and the oo’ automorphisms of P! preserve the image of such a map.

The independence of the conditions so expressed would need to be
thoroughly examined. But, with this interpretation, assertion (M) does hold
and can be derived from a celebrated theorem of Max Noether, which is very
well established (see [De], thm. 1.2): a generic quartic surface (in a specific
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sense) has no other divisors than its hypersurface sections; and the arithmetic
genus of such divisors is never zero.

Nevertheless, as Segre noticed, Meyer’s statement is certainly false when
singularities are allowed. Indeed, it is well-known that a general quartic surface
in P? has 3200 tritangent planes. Each of them meets the surface in a quartic
with 3 double points, which has geometric genus zero.

It is interesting to compare with a similar statement proved in 1979 by
Mumford and by Bogomolov (see [M-M]):

THEOREM (Bogomolov & Mumford). Every algebraic K3 surface over C
contains a singular rational curve and a pencil of singular elliptic curves.

Actually, they proved that a complete linear system of curves of minimal
arithmetic genus (greater than one) on the surface contains at least one irre-
ducible rational member. For a smooth quartic in P?, which is a special case
of K3 surface, this deals with the relatively uninteresting case where 7 =1.

Assertion (S) would be easy to establish if we knew that every complete
linear system of curves of arithmetic genus greater than one on a K3 surface has
an irreducible rational member. The main innovation of this paper is that, for
a restricted family of K3 surfaces, we show the existence of singular rational
irreducible members in some complete linear systems which are not minimal.

More precisely, we give a proof of Segre’s assertion (S) for # =2 and
h = 3 (Theorem 3.4). In §4 we establish a similar result for K3 surfaces
in P* (Theorem 4.1). However, for reasons explained before Lemma 2.5, we
have not been able to prove assertion (S) for 4 > 3.

SCHOLIA. What happens in reality is somewhat surprising. Sometimes the
problem seems to be very easy, and sometimes very hard. We shall try to
explain here why this is so. :

First we recall that the set of space curves of a given degree can be viewed
as a variety, by a construction usually attributed to Chow, though much of
the idea goes back to Cayley ([Ca]). (See [Sh] for a brief, but enlightening
discussion, and [H-P] for an almost exhaustive treatment.)

In a few words, let V C P" be a projective variety of dimension n. We
denote by PV the dual space of PV and consider the set A C (PV)Y"F! x V
of all points (hg,...,h,,x) such that every hyperplane h; contains x. One
can prove (cf. [Sh], Chap. 1, §6) that A 1s a closed set whose projection
in (PM)**! is defined by a single equation Fy. The form Fy is called the
Cayley form associated with V, and its coefficients are the coordinates of the
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Chow point of V. If — instead of looking merely at varieties — one considers
all cycles of a given degree m and dimension 7, one shows that the Chow
points form a projective algebraic variety. This is called the Chow variety of
all cycles in PV of degree m and dimension n.

SCHOLIUM 1. It is known that the Chow variety of space curves of
degree m has an irreducible component R,,, of dimension 4m, whose general
element is the Chow point of a smooth rational curve (¢f. [Co2], Lemma 2.4).
Moreover, any irreducible space curve with degree m and geometric genus
zero belongs to it.

We denote by Fx the projective space (of dimension 34) parametrizing all
quartic surfaces in P?. For each value of m, we can consider the incidence
correspondence Z,, C R,, X Fx consisting of all pairs (v, F) with (v) C F,
where () denotes the support of the 1-cycle whose Chow point is v € R,,.

Now a smooth quartic curve I" of genus 0 in P® is contained in a unique
quadric surface. From this it is easy to compute that it is contained in precisely
oo’ surfaces F € Fx. (The 17 conditions coming from the Bézout theorem
are independent; indeed, given any set of 16 points on I', there is a union
of two quadrics through them which does not contain T".) Thus the incidence
correspondence 7, has dimension 16 + 17 = 33 above some nonempty open
subset of R4.

But if we look at the family of plane quartics in P?, we see that its
dimension is 14 + 3 = 17 (one more than the dimension of R4 !). It can
be shown that those having 3 double points form a family of dimension
(14 —3) +3 = 14. Now, for a quartic surface to contain such a singular
curve I, it is enough to impose 11 simple points and the 3 double points,
since this also represents 11+2-3 = 4-441 intersections. Thus I' is contained
in 002?0 surfaces F € Fx. It follows that the incidence correspondence 74
has a component of dimension > 14 + 20 = 34 above the singular plane
quartics. ')

Hence not only is 7, reducible, but it has a component of larger dimension
than its dimension over the generic point of the Chow variety R, !

_ ") In fact, equality holds. The referee suggests the following argument: as a complete
intersection, any plane quartic is arithmetically Cohen-Macaulay of arithmetic genus 3. Therefore
it imposes exactly h%(Or(4)) = 14 conditions on quartic surfaces.

~ There is also a family of rational curves of degree 4 and arithmetic genus 1, namely the
rational reduced and irreducible quartic curves which are complete intersections of two quadric
surfaces (and have a double point). These curves are contained in co!® surfaces of degree 4.

As a matter of fact, this family of curves S C R4 has dimension 15. So, the fibres above
S span a 33-dimensional variety, which is also a component of Zy.
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This explains why we can say that both Segre and Meyer were right, in
some sense : they referred to the images in Fx of different components of Z,,.

We proceed with an informal discussion of the case & = 2, for which one
can also get a pretty clear picture :

SCHOLIUM 2. We refer to Max Noether ([No], §17) for a discussion of
space curves of degree 8. Noether uses several criteria?) to establish that a
general smooth rational octic I" is contained in no more than two independent
quartic surfaces?®) F,. Thus the incidence correspondence Zg has dimension
32+ 1 = 33 above some nonempty open subset of Rg and could not possibly
map surjectively onto Fx if it were irreducible. This is in agreement with
Meyer’s assertion for degree 8.

However, the complete intersections of a quartic and a quadric have the
right dimension (33, which is one more than dim Rg). Our task will consist in
showing that those with 9 double points form a subfamily of Rg of dimension
33 —9 = 24. Again, since these curves are contained in oo!® quartic surfaces,
we have to do with a component of larger dimension than the one above the
general point of Rg. We will then show that this component maps onto a
dense constructible subset of Fx.

Here is yet another heuristic way to understand why the dimension is one
more than normally expected: In Zg one can obtain a curve 1" with 9 double
points by imposing only 8 nodes.

Indeed, any quadric passing through the 8 nodes and one more point of T’
has 2-8+1 = 17 intersections with I'. Hence I' is contained in an irreducible
quadric Qp.

Since we are moving in Zg C Rg X Fg, the divisor I' is of type (4,4)
on Qgp, hence of arithmetic genus 9. But I' is rational and the assigned
singularities are ordinary double points. Hence I' automatically acquires a
ninth singular point.

2) For instance, on a smooth quartic F containing I', any other quartic surface F’
through I' cuts out a residual curve I”. The linear system |I’| has dimension 0. Indeed,

pa(D) = 0= (I? = —2; whence (I")?> = (O4) —T)? = —2, so that I is an isolated divisor.
Hence any other quartic through T" belongs to the pencil generated by F and F’.

3) One cannot leave out the word ‘general’. Indeed one also finds some smooth rational
curves of degree 8 on any smooth quadric, where they correspond to the divisors of type (1,7).

These curves are therefore contained in co® (reducible) surfaces of degree 4.

As a matter of fact, this family of curves S C Rg has dimension 24. So the fibres above
S span a 33-dimensional variety, which is also a component of Zg.
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1. ABOUT FINITENESS

Segre’s heuristic starting point was that a complete linear system of
arithmetic genus ¢ on a smooth quartic is also of dimension g. Now,
demanding that the system have a member with g ordinary double points
should represent g independent conditions. Hence, for every positive integer 7,
there should exist a finite number of rational irreducible curves in the complete
linear system cut out by the family of all surfaces of degree h.

This argument is unsatisfactory as it stands, because there are always
infinitely many reducible curves with the right number of nodes (unless 7 = 1).
For instance, for # = 2 the curve cut by the union of a tritangent plane and
any one of the infinitely many bitangent planes also has nine double points.

In fact, Segre did try to justify his claim, but in a totally unconvincing
way. There is no discussion of the irreducibility of the relevant incidence
correspondences. What is more. the argument depends on computing self-
intersection numbers on a rather unspecified system of quartic surfaces, all of
which might in particular be singular. However, this part of Segre’s argument
can be replaced by the following lemma. We always work over an algebraically
closed ground field £ of characteristic 0.

LEMMA 1.1. No K3 surface carries any one-dimensional (non-constant)
algebraic system of irreducible rational curves, whether smooth or singular:

Proof. A smooth rational curve I" on a K3 surface has arithmetic genus
zero, and hence (I')* = —2. Therefore T" is not even numerically equivalent
to any other irreducible curve. This yields the assertion for smooth curves.

As for the singular case, a proof is sketched in [G-G] (Lemma 4.2), but we
supply more details. Let B be a parameter curve for an algebraic system of
curves on a K3 surface X, whose generic member is irreducible and rational.
Without loss of generality, B is irreducible and even smooth, since we are
free to replace it by its normalization. Let 7 C X x B be the subvariety of
codimension I corresponding to the algebraic system. Then, by [Sh] (Chap. 1,
§6, Thm. 8), J is irreducible. We denote by p: J — X the first projection
and observe that p is dominant, unless the family is constant.

Let 7 be a generic point of B over the ground field k, so that k(n) = k(B).
Biassumption, the fibre I'y, of J above 7 is rational over the algebraic closure
k(n) of k(n). So, by a result which goes back to Hilbert and Hurwitz, T, is
birationally equivalent over k(1)) to a smooth conic. Now, k is algebraically

| closed; so, if t is a variable then k() is a C, field (¢f [La], Thm. 6).
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As the function field of some curve, k(n) is an algebraic extension of k(?);
hence it is also C; ([La], pp. 376-377). So, every conic defined over k(7))
has points defined over this field and is birationally equivalent to P,i(m. This
shows that k(n)(I',) is isomorphic to k(n)(?). Therefore we have the following
k-isomorphisms:

K(T) = k(n)(Ty) ~ k(n)(®) = k(B x P1).

Hence there is a birational equivalence ¢: B X P!——— 7. Consider the
composite rational map ¢ = p o ¢: B x P! ——— X. Since ¢ is dominant,
and X projective, we know (cf. [Sh], Chap. 3, §5, Thm. 2) that g* embeds
the regular differentials (of any rank) on X into those on B x P!.

Since X is a K3 surface, we note that wy is trivial, and hence h%(wy) = 1.
On applying g* we see that h°(B x P!, wp,p1) # 0. But this is impossible.
Indeed, if we denote by p; and p, the projections from B x P! to B and P!
respectively, we have: |

wpxp = Piwp @ prwpi -
On the other hand, H°(P',wp) = H°(P',Opi(—2)) = 0, and for quasi-
coherent sheaves the global section functor commutes with tensor products;
a contradiction. [

REMARK. Lemma 1.1 does not imply that a given K3 surface cannot
contain infinitely many smooth rational curves; see [SwD], § 5, for an example.

2. ABOUT EXISTENCE

Finiteness statements are useless if they are not accompanied by some form
of existence assertion. After all, zero is also a finite number! In the present
section we show the existence of irreducible rational curves, of degree 8 or
12, at least on some smooth quartic surfaces. For degree 8 there is a very
elementary proof, and we give it first. Then we shall proceed to the case of
degree 12, which requires some more elaborate machinery.

As mentioned above, on a quartic surface it is easy to find some reducible
curves of degree 8 with nine double points by considering unions of two plane
sections. Such curves are even infinite in number, but they do not lie on any
smooth quadric.*) That is why we start with a very explicit construction on

4) By the way, this may be one reason for working with the Chow variety rather than with
a Hilbert scheme. These degenerate cases have the same arithmetic genus, but they do not lie
in Rg .
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the smooth quadric S which is the image of the standard Segre embedding
o: P! x P! — P’
(o x1). Go 2 yn)) = (X2 Y 2 Z 2 W) = (xoyo : Xoy1 = %1)0 L xX1y1) -
Thus S is given by the equation

GX.Y,ZW)=XW-YZ=0.

LEMMA 2.1. Let p: P! — P! x P! be the map defined by
pr(u:t)— ((u4 - 1. (u4 W+ T‘L)) :

Then p is an injective morphism, whose image is an irreducible rational curve
T of type (4.4). Under the standard Segre embedding, U is the intersection
of S with the quartic surface T defined by

FX.Y.ZW)={ -2 -XZ=0.

Of course, T is a cone with vertex P = (0 :0:0: 1) and has a triple
line £ = {X =Y —Z=0}. However, T is also the intersection of S with a
smooth quartic surface of the form F+ H -G =0 for some quadratic form
HX.Y.Z. W).

Proof. All the assertions are easy to verify. I' has a unique singularity
(at P), whose effect on the genus is the equivalent of nine double points. As
for the last assertion, we state it in more general form:

LEMMA 2.2. Let I C P? be the complete intersection of two surfaces
defined by F = 0, respectively G = 0. We assume that the surface defined
by G =0 is smooth, that T is reduced, and that degF > deg G. Then there

exists a smooth surface among those with equation F+ H -G = 0, where
deg H = deg FF — deg G.

Proof. By a theorem of Bertini, the linear system determined by F and
by all polynomials of the form H -G has no movable singularity in P? outside
its base locus. As H runs through the set of all forms of the relevant degree,
the base locus is reduced to the points on I' = {F = G =0}.

Now, if P 1s a singular point of F 4+ H -G = 0 in the base locus, we
see that dF(P) + H(P) - dG(P) = 0. We can think of this as a system of
four equations in one variable x = H(P). But the rank of the Jacobian matrix
(F'.G")p at P is equal to 1 or 2 (0 is ruled out because the surface defined
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by G =0 is smooth). If it is equal to 2 then there is no suitable x; hence
P is not singular for any H.

When the rank is equal to 1, there is a unique solution and we get one
linear condition in the affine space of the coefficients of H. However, this
occurs only at the finitely many singular points of I'. Since a finite union
of hyperplanes does not exhaust the space of parameters, we can choose H
so that 1its coefficients lie outside this union. For any such H, the surface
F+H-G =0 is smooth on the whole of I". [

As a further illustration, we show how to produce an example with nine
distinct double points.

LEMMA 2.3. Let p: P' — P! x P' be the map defined by
pi(u:t)— ((u4 Ut e+ ), W+t ud ut 1Y)

Then p is a generically injective morphism, whose image is an irreducible
rational curve U of type (4,4) with precisely 9 distinct ordinary double
points. Under the standard Segre embedding, 1" is the intersection of S with
a smooth quartic surface.

Proof. In view of Lemma 2.2, the main thing to do is to study
the singularities of p. To this effect, we note that a polynomial map

po: Al — P! x P! defined by
po: t— ((@o(0) : @1(D), (Yo(0) : Pi(1))

fails to be injective when we have the following simultaneous equalities

©1(1) _ ©1(7) and P (1) _ Y1 (7)
wo(t)  @o(T) Po(t)  Yo(T)
for two different values ¢t and 7. Therefore we define

_ po(mpi () — 1(1)po(1)
B t—T

e Clrll1]

a(t)

and

Po(T)1h1(1) — Y1 (T)ho(1)

I—T

B(t) = e C[7][1].

Then py fails to be injective if, after fixing 7, there exists ¢ # 7 such that
a(t) = B(t) = 0. This involves studying the resultant R(7) of a(r) and [(z)
over C[7]. If py is generically injective then R(7) is not identically zero. With
our assumptions, it is a polynomial of degree < 18, whose roots describe
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the 9 pairs of points that are mapped to the double points of . In fact, the
degree is equal to 18 if we work projectively and consider p instead of po.
In the present case we obtain R(7) = (72 + 1)(r* + D)g(1), where

gr) =712 43710 1878 1 277 4 1170 + 677 + 97* + 87 + 677 + 47 + 1.

This is a decomposition into Q-irreducible factors; hence all the roots are
distinct. Furthermore, the degree is equal to 18, which means that the image
of the point at infinity is smooth. (For the example of Lemma 2.1, one obtains
R(7) = 1, which means that the whole singularity is concentrated at the image
of the point at infinity.) [

The approach we have taken for these examples can also serve to prove
some general statements :

LEMMA 2.4. The rational, reduced and irreducible curves of bidegree
(11, ) on a smooth quadric in P* are parametrized by an irreducible quasi-
projective variety R, C Ry, of dimension 2m — 1, where m = pu+ v.
A general point on R, , corresponds to an irreducible curve whose only
singularities are distinct nodes.

Proof. Any smooth quadric surface is isomorphic to P! x P'. Further,
a rational irreducible curve of bidegree (u,r) on P! x P! is the image of
amap p: P! — P' x P!, where p = ((¢o : 1), (%o : ¢1)) consists of two
pairs of homogeneous polynomials, respectively of degree p and v, varying
independently. These maps are parametrized by points of P +1 x p2+!,

This defines an incidence correspondence 7 , with base the open subset V
of P21 x P2+ which parametrizes those p which are generically injective
and for which p(P') is of bidegree (u,v). Indeed, the condition that p be
“many-to-one” 1s equivalent to the vanishing of some resultant polynomial (as
in the proof of Lemma 2.3). ;

The argument given in [Co2], Lemma 2.4, shows that 7 is irreducible and
that there is a correspondence between V and an irreducible subvariety R, ,
of R,, which defines the same curves as V. As the oo’ automorphisms of
P' do not modify the image of a map, the dimension of R, 1s equal to
Cp+ 1D+ QRv+1)—-3=2m—1, provided R, , is nonempty.

For = v =4 this is shown by Lemma 2.1, and the last assertion of the
lemma follows from Lemma 2.3.

For the general case, we refer to [Ta], as in Lemma 2.5 below. More
precisely, take 2 < p < v and assume by induction the existence of a nodal,
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irreducible, rational curve Y; of bidegree (u—1,v). Let Y, be a line of type
(1,0) avoiding the (u — 2)(r — 1) nodes of Y;. We can also assume that it
meets Y; in exactly v distinct points. Assign v — 1 of these, in addition to
the nodes of Yi. This set of (u — 1)(r — 1) nodes makes Y; + Y, virtually
connected, as desired.  []

We also know from Lemma 2.2 that any reduced curve of type (u, ) lies
on a smooth surface of degree u, a fact that will play an important role later.

It 1s difficult to pursue such an explicit approach for the case where h = 3,
because the smooth cubic surfaces are not all alike. We therefore switch to
the method of Tannenbaum [Ta]. His results, which are based on deformation
theory, provide the existence — under precise conditions — of rational, reduced
and irreducible curves, parametrized by an algebraic scheme. Unfortunately,
they fail to apply on surfaces which are not rational. That is why we cannot
immediately generalize our results to the intersections of a quartic with surfaces
of degree higher than 3.

LEMMA 2.5. Any smooth cubic surface F C P* carries (for any positive
integer \) a rational, reduced and irreducible curve 1"y of degree 3\ having
only nodes for singularities, which belongs to the linear system |Xx| cut out
by all surfaces of degree ).

Proof. Since the surface F is rational, we can use the results of
Tannenbaum ([Ta], §2). The proof is by induction on A.

For A =1 we consider the intersection I'p of F with its tangent plane at
any point P that does not lie on any of the 27 lines. Then I'p is irreducible.
If P is sufficiently general then I'p has a node at P. Indeed, one also obtains
a node with the plane sections of F' that degenerate into the union of a line
and a smooth conic. Thus there are many ways to choose I'p; we shall use
this co”-freedom in the rest of the proof.

Now suppose the result true for A. We prove it for A + 1. Thus we
assume that there exists a rational, reduced and irreducible curve I'y € |X,|
with p,(I'y) = 31\%ﬂ+1 distinct nodes, as the genus formula shows. (Indeed,
F is embedded in P? by its anticanonical sheaf.)

We apply [Ta], Prop. 2.11, to the reduced curve ¥ =1, UI'p, where I'p
is a sufficiently general rational plane section. Then the 3\ intersection points
of I'y with I'p are among the nodes of Y, which therefore totals

:3)\_()\;1_)+1_}_3)\_{_]:3M+

2
2 2

6
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nodes. Of course Y belongs to |X)4+;| and we may assign 5=056—1 of the
nodes, leaving out only one of the intersection points of T'y with I'p.

In this way we obtain a flat family Q) relative to which these nodes are
assigned; and Y is virtually connected with respect to ), in the sense of
[Ta], Def. 2.12. Thus we can apply [Ta], Thm. 2.13, to deduce that a generic
‘member of Xyp1| with 6 = 3§A2—+1—) + 1 nodes is irreducible. By the genus
formula, such a curve is rational. [

With this existence result we can now state the analogue of Lemma 2.4
for cubics.

LEMMA 2.6. The rational, reduced and irreducible curves, of degree
m = 3\, belonging to the linear system |Xx| on a smooth cubic surface
F C P? and having only nodes for singularities are parametrized by a quasi-
projective, equidimensional scheme Wy C R,, of dimension m — 1.

Proof. We apply [Ta], Lemma 2.2, to the rational, reduced and irreducible
curve Y = T, € |X,| of the preceding lemma, which has precisely
0 = p(Y) = BW + 1 nodes and no other singular points. Further,
BO(Y) = pa(Y) +degY (cf. [Col], Lemma 1).

We derive the existence of a smooth irreducible algebraic k-scheme
Vs(IXy|;Y), of dimension dim|Xy| — & = W) — 1 — p(Y) = m — 1,
parametrizing reduced curves in |X,| with precisely 6 nodes and no other
singularities which are flat deformations of Y in F. Of course, a general
curve of Vg(|X,|;Y) is irreducible.

Let ) C Vs X F be the universal Cartier divisor of the flat family. Since
Vs x F is smooth, we can regard ) as a Weil divisor, and hence as an
incidence correspondence in this product. We prove that ) is irreducible.
Indeed, since %) 2, Vs is flat, and every fibre 1s one-dimensional, it follows
from [Hart], Chap. 3, Cor. 9.6, that every irreducible component %); of 2
has dimension equal to dim Vs + 1. Now, Vs is irreducible, so ¢(2);) = Vs
for every i. But the generic fibre of ¢ is irreducible. Hence i = 1.

We denote by )’ the open dense subset of ) corresponding to the
irreducible curves, and let Vi = (). We now apply [H-P], Chap. 11,
§6, Thm. II, to Q) and conclude that there is an irreducible incidence
correspondence 7 between Vi and an irreducible subvariety Wy C R
which defines the same curves as Vj.

Since every curve parametrized by Vjs is reduced, we have dimWy, =
dim V§. Taking all possible irreducible Y € |X,|, we get irreducible varieties

m s
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Wy parametrizing all rational, reduced and irreducible curves belonging to
|X| and having only nodes for singularities. We define W, as the union of
these varieties Wy. [

REMARKS. 1) The schemes parametrizing all curves of a given geometric
genus, in a linear system on a rational surface, have been well examined (see
[Ta], [Ha]). The new feature in Lemma 2.6 is that we “pull them up” to
subschemes of the Chow variety R,,.

2) We can think of a smooth cubic surface as being P? with six points
blown up. Then, if we consider the effect of blowing-down on the curves of
the linear system |X,|, we see that Lemma 2.5 has the following interesting
consequence: in the system of plane curves of degree 3\ with six A-fold
points, there are some rational, reduced and irreducible curves with only nodes
as further singularities.

3. RATIONAL CURVES ON QUARTICS IN P?

A rational space curve of degree 8 is given as the image of a map
@: P! — P3 defined by four homogeneous polynomials of degree 8. Such
maps depend on 4-9 = 36 arbitrary coefficients; hence they are parametrized
by P%. Those maps which are generically injective and for which o(P') is
a curve of degree 8 correspond to an open subset U C P¥. By ¢ € U we
mean that the coefficients of ¢ are in U.

Such a curve I' is contained in at most one quadric Q. So, it will be
convenient to consider the pair (I', Q) instead of I' alone. For simplicity, we
shall restrict to the case where Q is smooth. We denote by Ly (resp., Lc
and Lg) the quasi-projective variety of smooth quadrics (resp., cubics and
quartics) in P,

LEMMA 3.1. The following correspondences between quasi-projective
varieties are algebraic and define closed subvarieties :

a) the incidence correspondence G C Rg x Lo parametrizing the rational
curves of degree 8 on smooth quadrics,

b) the incidence correspondence F C Rg X Lo X Lk parametrizing the
rational, reduced and irreducible curves of type (4,4) on smooth quadrics
which are cut out by smooth quartic surfaces,

c) the incidence correspondence H C Rg X Lo X Fi parametrizing the |
rational, reduced and irreducible curves of type (4,4) on smooth quadrics. J
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Proof. Let
F={(p,x,0.K)€UxP x Lox Lg|xepP)CQNK}.

This is a closed subset of U x P? x Ly x Lk . Indeed, ©(P') C QN K means
that o(u : 1) € QN K for every (u : 1) € P!. So, the coefficients of all
monomials in (u: 1) of fp(p@ : 1) and fx(e@ : 1)) must vanish (here fo
and fx denote the polynomial equations of Q and K). This yields algebraic
relations between x and the coefficients of ¢, fp, and fx.

Let F; be any irreducible component of F. Call U; its first projection.
By [H-P] (Chap. 11, §6, Thm. II), there exists an irreducible correspondence
Fi between Ly x Lk and an irreducible subvariety Ry, of Rg which defines
the same curves as U;. We define F to be the union of the F;.

Similarly, we define G = {(@:x, Q) cUxPx Ly|xe€pP)C Q}.
Further, let H = {(p,x,0.K) € UxP* x Lo x Fx | x € o(P") C ONK}.
As before, G and H are closed subsets of U x P? x Ly, respectively
Ux P x Lo x Fg. Making use of irreducible components G; of G,
respectively H; of H, we find irreducible correspondences G; and H; between
Lo, respectively L, x Fx and irreducible varieties Ry, C Rg, respectively
Ry, C Rg. Again, we define G and H as the unions of these irreducible
components.

Finally, we note that 7, G, and H, as closed subsets of quasi-projective
varieties, are quasi-projective.  []

LEMMA 3.2, The incidence correspondence F is a quasi-projective variety
of dimension 34.

Proof.  Define mg: G — Lo by mo(y, Q) = Q (for v € Rg) and similarly
. H—G by WI(V:Q:K) — (W/Q) and 7: F — G by W(PYQK) - (’Y Q)

Now, H is a closed subset of a quasi-projective variety, and Fx is projective.

It follows from [Sh] (Chap. 1, §5, Thm. 3) that 7;(H) is closed in G, and
hence also quasi-projective.

Since a smooth quadric Q is projectively normal and a linear equivalence
class on Q is determined by the bidegree, every reduced and irreducible curve
[ of bidegree (4,4) is cut out, on Q, by (at least) one irreducible quartic K.
Let v be the Chow point of T, so that (v, Q.K) € H. Then the fibre of )

above (v, Q) contains K and all the reducible quartics through Q. Hence it
is of dimension 10.
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We also know from Lemma 2.2 that a general member of the linear system
of all quartics through T" is smooth. Hence m;(H) = n(F) and the fibres of
7 over w(F) are also 10-dimensional.

Finally, by Lemma 2.4, mpom; maps onto Ly and all the fibres of | )
have dimension 15. As L, is irreducible of dimension 9, any irreducible
component of m(F) of maximal dimension has dimension 24. Further, the
fibre of m over w(F) is 10-dimensional, so F has dimension 34. U]

LEMMA 3.3. The incidence correspondence J C Rz X Lo X Lg
parametrizing the rational, reduced and irreducible curves which are the
complete intersection of a smooth quartic and a smooth cubic surface, is a
quasi-projective variety of dimension 34.

Proof. The argument is much the same as for degree 8. For instance,
a curve I' of degree 12 cannot be contained in more than one cubic C.
So, it is convenient to consider the pair (I',C) instead of I' alone. For
simplicity, we restrict to the case where C is smooth. Then Lemma 2.6
replaces Lemma 2.4, and the proof of Lemma 3.2 has to be modified mainly
for the actual computation of dimensions, which is as follows.

The quasi-projective variety L¢ of smooth cubic surfaces has dimension 19.
And the dimension of the family of rational curves I' € |X4| is equal to 11,
by?) Lemma 2.6. Finally, a curve I' C C lying on an irreducible quartic K, is
also contained in all the reducible quartics through C. Hence the linear system
of all quartics through I" has dimension 4, and a general member is smooth.

Putting everything together, we find 19 + 11 44 = 34 for the dimension
of the incidence correspondence 7. [

We now come to the proof of assertion (S) for =2 and h = 3.

THEOREM 3.4. The smooth quartics in P> carrying rational, reduced and
irreducible curves of degree 8, respectively 12, obtained as intersections with
smooth quadrics, respectively cubics, form a constructible set of dimension 34
in Lx. A general quartic in this set carries also some rational curves of
degree 8 (resp., 12) having only nodes for singularities.

Proof. Let p: F — Lk be the projection map defined by p(y,0,K) =K.
Then every fibre of p is finite. Indeed, let us consider the first projection

%) Strictly speaking, this is only a lower bound, since Lemma 2.6 does not count the curves
having other singularities than nodes. But the proof of Theorem 3.4 shows that one has in fact
equality.
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g: F — Rg. We know from Lemma 3.1 that F is algebraic. Hence, for any
K € Lk, the push-forward g.p~'(K) describes an algebraic system of rational
curves on K, which cannot be of dimension > 1, by Lemma 1.1, since
K € Lx is a K3 surface. Hence this algebraic system is finite. Moreover, F
parametrizes only reduced curves of degree 8, which therefore do not belong
to more than one quadric. Hence each Chow point  corresponds to a unique
pair (v, Q). Thus the fibre p~Y(K) contains only finitely many points.

Let E C F be an irreducible component of top dimension 34. By the
theorem on the dimension of the fibres (see [Sh], Chap. 1, §6, Thm. 7), we
see that dimp(E) = dim E = 34.

On applying Chevalley’s theorem to the quasi-projective varieties F and
Ly and to the finite-type morphism p, we also see that p(F) is constructible,
i.e., a finite disjoint union of locally closed subsets V;. Since Lx 1s quasi-
projective, so are the V;.

The same argument works for curves of degree 12, with the map
p: J — Lg. Note that one gets, for a component £ C J of maximal
dimension,

34 > dimp(E) =dimE > 34.

Hence we obtain the same equality as before.  []

REMARKS. 1) As expected, singular points other than nodes do not affect
the dimensions of the relevant schemes. This is because, roughly speaking,
nodes impose the lowest number of conditions for decreasing the geometric
genus. However, as is shown by Lemma 2.1, not all curves in Theorem 3.4
have only nodes for singularities.

2) In the proof of Theorem 3.4, we could replace E by its closure E in
Rs x Fo x L, where Fp denotes the space of all quadrics in P3. Now,
Rg x Fp is a projective variety. Hence p(E) is closed (cf. [Sh], Chap. 1, §5,
Thm. 3) and p(E) = Lg. This would account in particular for the rational
octics that lie on a quadratic cone, instead of a smooth quadric surface.

4. RATIONAL CURVES ON K3 SURFACES IN P*

Let S,3 be a K3 surface spanning P* (i.e., not contained in any
hyperplane). The notation refers to the fact that such a surface is a smooth
complete intersection of a quadric and a cubic threefold. We also write S, 3 for

the 43-dimensional quasi-projective variety of all S5 3’s in P* (see Lemma 4.2).
In the present section we prove:
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THEOREM 4.1. The surfaces in S, 3 carrying rational integral curves of
degree 12, obtained as intersections with smooth quadrics, form a constructible
set of dimension 43 in S,3.

The idea is to consider the curves at issue as belonging to the intersection
of two quadrics in P*. This is a Del Pezzo surface (i.e., its anticanonical sheaf
is ample). Hence it is not very different from a cubic surface. In particular, it
is rational and we can apply again the results of Tannenbaum.

We write P, for the quasi-projective variety of all smooth intersections of
two quadrics in P*. Thus, P4 is an open subset of the Grassmann variety of
pencils of quadrics in P?.

LEMMA 4.2. P4 has dimension 26; and S, 3 has dimension 43.

Proof. The dimension of P, is the dimension of the Grassmann variety
of rank 2 subspaces of the space of quadratic forms in 5 variables, to wit,
2(15 —-2)=26. ‘

Similarly, S,3 is an open subset of the projective bundle over the
space P'* of quadrics with fibre the projectivization of the space of cubic
forms modulo (linear) multiples of a quadric. Thus the fibre has dimension

) -5-1=29. O
LEMMA 4.3. Any smooth intersection of two quadrics P C P* carries
(for any positive integer \) a rational, reduced and irreducible curve Ty
of degree m = 4\ having only nodes for singularities, which belongs to the
linear system |Xy| cut out by all hypersurfaces of degree .
Such curves are parametrized by an irreducible quasi-projective scheme of
dimension m — 1.

Proof. We simply note that P € P4 is embedded in P* by its anticanonical
sheaf. Hence we can apply [Col], Lemma 1, and the proofs of Lemma 2.5
and Lemma 2.6 carry over with minimal changes. [

In the present paper we are especially interested in the case where A = 3.
The lemma shows that there exist rational, integral curves of degree m = 12
on some surfaces S € S,3. They are obtained as intersections with smooth
quadrics and have only nodes for singularities.

Proof of Theorem 4.1. Let Gy, be the Chow variety of rational curves of
degree 12 in P*. As explained at the beginning of §3, we can work over an
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open set of reduced and irreducible curves. This will be implied whenever we
write a new correspondence. (For simplicity we shall use the same notation,
[, for a curve and for its Chow point.)

We denote by L, (resp., L¢) the quasi-projective varieties of smooth
quadric (resp., cubic) threefolds in P*. As in Lemma 3.1, the incidence
correspondences we are working with can be “pulled up” to define the
following algebraic correspondences:

H={T.P)€GxPy|T=PNC for some Cec Lc }

and
J={T.5)€G1rx8;|T=85NQ for some Q€ Ly }.

In view of Lemmas 4.2 and 4.3, the dimension of H is equal to 264+(m—1) =
37. This is also the dimension of its image in G;>. Indeed, the fibres of the
second projection are finite, since a curve I' € Gj» cannot belong to more
than one intersection of two quadrics. (In fact, there is even a map that goes
directly from J to H, but we can do without it.)

To compute the dimension of 7, we notice that 7 and J have the same
image in Gj». Now, a general element in the image of H corresponds to
a curve I' of degree 12 with 13 distinct nodes and belongs to a pencil of
quadrics. But a surface S € S>3 is contained in a unique quadric. Hence
an element in the fibre of J above I' determines a quadric, say @, in the
! -system of quadrics through I and is then determined by the family of all
cubic threefolds containing I', provided we discount the reducible elements
that contain Q.

On the other hand, no more than 24 conditions are required for a cubic
hypersurface to contain I'. In fact it is enough to impose 11 simple points and
the 13 double points, since this represents 2-13+411 = 3- 12+ 1 intersections.
Therefore, as a vector space, the family of cubics containing I has dimension
(>) 35—-24=11.

After discounting, as in Lemma 4.2, the 5-dimensional vector space of
reducible cubics containing Q as a component, we are left with an oo’ -system
of surfaces®) § € &3 containing I' and contained in Q. As Q varies in a
pencil, the fibre of 7 above I' has dimension (>) 5+ 1 = 6.

It follows that J 1is of dimension (>) 37 + 6 = 43. Now, let p be the
projection map from J to S&p3. By Lemma 1.1 all the fibres of this map
are finite. Since the dimensions are right, as is shown by Lemma 4.2, we
conclude exactly as in the proof of Theorem 3.4. [

6 : ; .
) The smoothness can be proved by an extension of Lemma 2.2, in which we replace the
divisors in P by divisors in Q.
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REMARK. Theorems 3.4 and 4.1, together with [C-S], Example 1.3, clearly
imply the following statements:

THEOREM 3.4'  The smooth quartics in P° carrying reduced and irre-
ducible curves of degree 8, respectively 12, and geometric genus 9 — 6
(0 <06 <9), respectively 19—6 (0 < 6 < 19), obtained as intersections with
smooth quadrics, respectively cubics, and having O nodes, form a constructible
set of dimension 34 in Lg.

THEOREM 4.1"  The surfaces in S, 3 carrying integral curves of degree 12
and geometric genus 13 — 6 (0 < 6 < 13), obtained as intersections with
smooth quadrics, form a constructible set of dimension 43 in S, 3.
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