Zeitschrift: L'Enseignement Mathématique

Herausgeber: Commission Internationale de l'Enseignement Mathématique

Band: 43 (1997)

Heft: 3-4: L'ENSEIGNEMENT MATHÉMATIQUE

Artikel: SUR LES TRANSFORMATIONS DE CREMONA DE BIDEGRÉ (3,3)

Autor: Pan, Ivan

Kapitel: 5. Comparaison avec les résultats classiques

DOI: https://doi.org/10.5169/seals-63281

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 28.11.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

(b) pour * = J,

$$0 \longrightarrow A(-5) \longrightarrow A^{3}(-4) \oplus A(-5) \longrightarrow A^{4}(-3) \longrightarrow \mathcal{I}(T) \longrightarrow 0;$$

en particulier

$$p_{B(T)}(t) = 6t - 2.$$

(c) pour * = R et T générique,

$$0 \longrightarrow A(-6) \longrightarrow (A(-5) \oplus A(-4))^2 \longrightarrow A^4(-3) \longrightarrow \mathcal{I}(T) \longrightarrow 0;$$

en particulier

$$p_{B(T)}=5t+1\,,$$

et donc $T \notin \mathbf{T}_{3,3}^{\mathbf{D}} \cup \mathbf{T}_{3,3}^{\mathbf{J}}$.

5. COMPARAISON AVEC LES RÉSULTATS CLASSIQUES

Soit $T: \mathbf{P}^3 - - \to \mathbf{P}^3$ une transformation de Cremona; on note Λ_T le système linéaire correspondant: un élément générique de Λ_T est donc le transformé strict d'un plan générique. Si $S, S' \in \Lambda_T$ sont génériques, alors l'intersection schématique $S \cap S'$ est la réunion de la transformée stricte γ d'une droite générique et d'un 1-cycle fixe ω dont le support est contenu dans l'ensemble des points base de T; en particulier $\deg(\omega) = \deg(T)^2 - \deg(T^{-1})$. Dans le cas de bidegré (3,3) on a $\deg(\omega) = 6$, et on écrit $\omega_6 = \omega$.

Si O est un point singulier de S, pour tout $S \in \Lambda_T$, on dit:

- (i) O est un *point double ordinaire* pour Λ_T si les cônes tangents en O des éléments génériques de Λ_T sont non dégénérés et sans génératrice commune;
- (ii) O est un point double de contact pour Λ_T si les cônes tangents en O des éléments génériques de Λ_T sont non dégénérés et coïncident.

Dans [7, chap. XIV, page 295 et table VI], Hilda Hudson, qui ne considère apparemment que des situations génériques, affirme qu'il y a quatre types de transformations de bidegré (3,3). Plus précisemment, elle distingue quatre cas suivant la nature du lieu des points singuliers $\Sigma(S)$ d'un élément générique $S \in \Lambda_T$ et celle de ω_6 (on indique entre parenthèses le type correspondant à notre définition 1.1):

- (a) S est lisse (**D**);
- (b) $\Sigma(S)$ est discret et
 - (b1) contient un point double O ordinaire pour Λ_T qui est un point double pour ω_6 (**J**), ou bien
 - (b2) contient un point double O de contact pour Λ_T qui est un point quadruple pour ω_6 (**J**);
- (c) $\Sigma(S)$ est une droite (**R**).

Dans le cas (a), T est déterminantielle d'après le corollaire, et dans le cas (c) elle est évidemment réglée. Les deux cas (b) fournissent des transformations de de Jonquières: en effet, les hypothèses impliquent que O est un point multiple de $S \cap S'$ de multiplicité 4 pour (b1) ou 6 pour (b2), et donc que O est un point double de γ .

A partir du lemme 2.3 on construit facilement des transformations vérifiant les conditions (b): pour (b1) prendre q et g génériques, et pour (b2) choisir $q \in \mathcal{M}^2$ et g générique.

Dans [3] L. Cremona ne prétend pas à une classification mais se propose seulement de démontrer la simplicité et la fécondité de sa méthode de construction de transformations birationnelles (pour un exposé de cette méthode voir aussi [16, chap. VIII]); il étudie en détail cinq cas:

- (1) S est lisse (**D**);
- (2) S est réglée (\mathbf{R});
- (3) S contient deux points doubles P_1, P_2 ordinaires pour Λ_T , et ω_6 est la réunion de la droite P_1P_2 et d'une quintique rationnelle avec deux points doubles en P_1 et P_2 (**D**) ou avec un point triple en P_1 et passant simplement par P_2 (**J**);
- (4) S contient trois points doubles P_1, P_2, P_3 ordinaires pour Λ_T et ω_6 est la réunion des trois droites $P_i P_j$ et d'une cubique gauche passant par les P_i (**D**);
- (5) S contient un point double O de contact uniplanaire pour Λ_T (*i.e.* le cône tangent en O d'un élément générique de Λ_T est dégénéré en un plan double) et ω_6 a un point quadruple en O (\mathbf{J}).