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TRANSEORMATIONS DE CREMONA DE BIDEGRE (3,3) 295

(b) pour x =J,

0 — A(—5) — AX(—4) ® A(=5) — A (=3) — IZ(T) — O;

en particulier
PB(T)(f) =6t—2.

(c) pour * =R et T générique,
0 — A(—6) — (A(=5) ® A(—4)? — A*(=3) — I(T) — 0;

en particulier
DPB(T) = 5t+1 .

et donc T ¢ TS5 UT} ;.

5. COMPARAISON AVEC LES RESULTATS CLASSIQUES

Soit T: P> ——— P3 une transformation de Cremona; on note Ar le systéme
linéaire correspondant: un élément générique de Ay est donc le transformé
strict d’un plan générique. Si S, S’ € Ar sont génériques, alors I'intersection
schématique S NS’ est la réunion de la transformée stricte v d’une droite
générique et d’un 1-cycle fixe w dont le support est contenu dans 1’ensemble
des points base de T ; en particulier deg(w) = deg(7)* — deg(T~!). Dans le
cas de bidegré (3,3) on a deg(w) = 6, et on écrit weg = w.

Si O est un point singulier de S, pour tout S € Ar, on dit:

(i) O est un point double ordinaire pour Ar si les cOnes tangents en O
des éléments génériques de A7 sont non dégénérés et sans génératrice
commune;

(i1) O est un point double de contact pour Ar si les cOnes tangents en O
des éléments génériques de Ay sont non dégénérés et coincident.

Dans [7, chap. XIV, page 295 et table VI], Hilda Hudson, qui ne considere
apparemment que des situations génériques, affirme qu’il y a quatre types de
transformations de bidegré (3,3). Plus précisemment, elle distingue quatre cas
suivant la nature du lieu des points singuliers X(S) d’un élément générique

S € Ar et celle de we (on indique entre parentheéses le type correspondant 2
notre définition 1.1):
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(a) S est lisse (D);
(b) 2(S) est discret et

(bl) contient un point double O ordinaire pour Ay qui est un point
double pour wg (J), ou bien

(b2) contient un point double O de contact pour Ar qui est un point
quadruple pour wg (J);
(c) Z(S) est une droite (R).
Dans le cas (a), T est déterminantielle d’apres le corollaire, et dans le cas
(c) elle est évidemment réglée. Les deux cas (b) fournissent des transformations
de de Jonquieres: en effet, les hypotheses impliquent que O est un point

multiple de SNS' de multiplicité 4 pour (bl) ou 6 pour (b2), et donc que O
est un point double de ~.

A partir du lemme 2.3 on construit facilement des transformations vérifiant
les conditions (b): pour (bl) prendre g et g génériques, et pour (b2) choisir
g € M? et g générique. '

Dans [3] L. Cremona ne prétend pas a une classification mais se propose
seulement de démontrer la simplicité et la fécondit¢ de sa méthode de
construction de transformations birationnelles (pour un exposé de cette méthode
voir aussi [16, chap. VIII]); il étudie en détail cinq cas:

(1) S est lisse (D);
(2) S est réglée (R);

(3) § contient deux points doubles P;,P, ordinaires pour Ar, et weg est
la réunion de la droite P;P, et d’une quintique rationnelle avec deux
points doubles en P; et P, (D) ou avec un point triple en P; et passant
simplement par P> (J);

(4) S contient trois points doubles Pj, Py, P3 ordinaires pour Ar et we est
la réunion des trois droites P;P; et d’une cubique gauche passant par
les P; (D);

(5) S contient un point double O de contact uniplanaire pour Ar (i.e. le
cone tangent en O d’un élément générique de Ar est dégénéré en un
plan double) et wg a un point quadruple en O (J).
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