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4. UN COROLLAIRE ET PLUS D’EXEMPLES

COROLLAIRE 4.1.  Soit T € T3 3. On suppose qu’il existe un plan H C p?
dont le transformé strict est lisse. Alors, T est déterminantielle.

Preuve. On observe qu’on peut supposer le plan H générique. En parti-
culier T n’est pas réglée et donc, par le théoreme, il suffit de démontrer que
T n’est pas de de Jonquieres.

On note S le transformé strict de H et ' le systeme linéaire sur S défini
par les transformées strictes des droites contenues dans H. Par le théoreme
de Bertini ([6, chap. III, rem. 10.9.1]), un élément générique de I ne peut
avoir de singularités que sur I’ensemble des points base de I'. Puisque cet
ensemble est fini, s1 7" était de de Jonquieres, il existerait P € § tel que
I’élément générique de I' serait une section plane de S singuliére en P :
puisque I' a dimension deux, ceci contredit que § soit lisse. [

REMARQUE. La preuve du corollaire montre que pour une transformation
de de Jonquieres, le transformé strict d’'un plan générique posséde un point
double qui, par le théoreme de Bertini, sera fixe si T n’est pas réglée.

Si T:P°>——— P3 est une application rationnelle, le schéma de base B(T)
de T est, par définition, le sous-schéma de P> défini par 'idéal Z(T).

EXEMPLE 4.2. Si T est une transformation de Cremona telle que B(T)
est une courbe (réduite) irréductible et lisse, alors 7 € T?3: en utilisant
[4, exemple 2], c’est un cas particulier de [12]; voir aussi [7, chap. XIV,§11].

EXEMPLE 4.3. Si T' = [fo,fi,./3] € T23, on a un complexe

)

0 — A3(—4) 2L g4(—3) LI oy

ou M est une matrice dont les mineurs maximaux définissent 7. Par [14,
chap. X, lemme 2.7] ou le théoréme de Buchsbaum-Eisenbud [2, thm. 1.4.12],
ce complexe est exact.

EXEMPLE 4.4. La transformation 7 de I’exemple 1.2 n’est pas détermi-

nantielle. D aprés ’exemple ci-dessus, il suffit de monrer que Z(T) possede
la résolution minimale

0 — A(=5) =5 A3 (—4) ® A(-5) 25 AY(=3) 2% T(T) — 0,
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ou
X 0 —z y -—a
y Z 0 —x -—b
=1 T 2 0~ | 2 = (xq,¥4,29, 9)
0 0 0 0 g
et

g=ax-+by-+cz.

En effet, il est clair que Im(yp;) C Ker(ypy); réciproquement, puisque
pgcd(g,g) =1 et x,y,z est une suite A-régulicre, on a

o= € Ker(ypy) <= (aix+ axy+aszg)g+asg =20

04 = /84q> et
< dfs€A: { (a1 + Baa)x + (a2 + Pab)y
+ (a3 + B4c)z =0

: 301(/6) = Q,
fa

d’ou Im(p;) D Ker(yp,) ; en utilisant encore une fois que x,y,z est une suite
A-réguliere, on obtient Ker(yp;) = Im(pp) ; enfin ¢y est banalement injective.

REMARQUE. Pour finir, on donne (sans démonstration) quelques précisions
sur les sous-ensembles Tzz, TD,, T3, et TR, (voir [13]):

1. T3 3 est un sous-ensemble constructible et connexe de dimension 39, dans
la variété quasi-projective des applications rationnelles de degré 3.

2. T13) 3 Tg 5 et T§3 sont des sous-ensembles constructibles et irréeductibles
de dimensions 39, 38 et 31 respectivement, avec T?3 ﬂTg3 = .

3. Soit T € Tas", on = € {D,J,R}; notons pgr) le polynéme de Hilbert
de B(T). Alors, on a des résolutions minimales de la forme :

(a) pour x =D,
0 — A%(—4) — AY=3) — Z(T) — 0;

en particulier
pB(T)(t) = 61— 2.
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(b) pour x =J,

0 — A(—5) — AX(—4) ® A(=5) — A (=3) — IZ(T) — O;

en particulier
PB(T)(f) =6t—2.

(c) pour * =R et T générique,
0 — A(—6) — (A(=5) ® A(—4)? — A*(=3) — I(T) — 0;

en particulier
DPB(T) = 5t+1 .

et donc T ¢ TS5 UT} ;.

5. COMPARAISON AVEC LES RESULTATS CLASSIQUES

Soit T: P> ——— P3 une transformation de Cremona; on note Ar le systéme
linéaire correspondant: un élément générique de Ay est donc le transformé
strict d’un plan générique. Si S, S’ € Ar sont génériques, alors I'intersection
schématique S NS’ est la réunion de la transformée stricte v d’une droite
générique et d’un 1-cycle fixe w dont le support est contenu dans 1’ensemble
des points base de T ; en particulier deg(w) = deg(7)* — deg(T~!). Dans le
cas de bidegré (3,3) on a deg(w) = 6, et on écrit weg = w.

Si O est un point singulier de S, pour tout S € Ar, on dit:

(i) O est un point double ordinaire pour Ar si les cOnes tangents en O
des éléments génériques de A7 sont non dégénérés et sans génératrice
commune;

(i1) O est un point double de contact pour Ar si les cOnes tangents en O
des éléments génériques de Ay sont non dégénérés et coincident.

Dans [7, chap. XIV, page 295 et table VI], Hilda Hudson, qui ne considere
apparemment que des situations génériques, affirme qu’il y a quatre types de
transformations de bidegré (3,3). Plus précisemment, elle distingue quatre cas
suivant la nature du lieu des points singuliers X(S) d’un élément générique

S € Ar et celle de we (on indique entre parentheéses le type correspondant 2
notre définition 1.1):
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