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et évidemment réglée. D'autre part, T' est une transformation de de Jonquières

par le lemme 2.3 et aussi réglée.

Exemple 2.5. Dans [13, chap. 4] on montre que la partie de dimension 1

de l'ensemble des points base d'une transformation réglée est de l'une des

formes : une droite, deux droites concourantes, trois droites concourantes non

coplanaires et trois droites non coplanaires dont l'une s'appuie sur les deux

autres. Voici un exemple de chaque cas :

T] [xy2, y\ 7x2. wx2],

To [x3,x2y,zxy, wy1],

r3 [x2y,xy2, z(y2

T4[xy2,yx2,zx2,wy2] ;

avec pour inverses respectives :

Tfs[A. yx2

T 'f1 [xy2.y3,zxy

A"' [x(r - x2),zyx, w(y2 - x2)],

T,17V.

3. Preuve du théorème

Deux lemmes sont nécessaires pour démontrer le résultat principal.
Rappelons pour commencer que sur une variété normale W, on dispose

de la notion de système linéaire sans composante fixe associé à un diviseur
de Weil: se donner un tel système linéaire A de dimension / revient à se
donner une application rationnelle <fr: WPl telle que le transformé strict
d'un hyperplan générique de P' est un élément générique de A; de plus,
l'ensemble des points base de A coïncide avec l'ensemble des points où é
n'est pas définie (voir [10]).
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LEMME 3.1. Soit S C P3 une surface cubique normale. Alors, tout système

linéaire sur S dont l'élément générique est une cubique gauche a dimension

au plus 2 ; en particulier ceux de dimension 2 sont complets.

Preuve. Tout d'abord, on rappelle que normal implique régulier en

codimension 1 (voir [6, chap. II, §6]), donc l'ensemble des points singuliers
de S a dimension zéro.

On suppose, par l'absurde, qu'il existe sur S un système linéaire F de

dimension 3 constitué génériquement de cubiques gauches. Le sous-système

TPup2 constitué de cubiques passant par deux points génériques P\,P2 de

S est de dimension 1. Puisque S n'est singulière qu'en un nombre fini de

points, un plan générique H passant par Pi et P2 est transverse à S en tout

point, et par conséquent la section plane Ch := H D S est une cubique lisse

de genre 1. D'autre part, on a l'application rationnelle

0: rPl)PlP1 — CH

qui à 7 G Tpl :p2 générique associe le point P7 de 7 H H distinct de Pi et

P2. Puisque 7 est gauche, P7 n'appartient pas à la droite P1P2 et, quitte à

changer //, on peut supposer que f s'étend en un morphisme non constant
de P1 dans C#, ce qui est impossible.

Pour le lemme suivant et la preuve du théorème on utilisera la théorie de

la liaison des courbes développée par Peskine et Szpiro: voir [11] ou [14,

chap. X, §3].

Si Y est un sous-schéma fermé de P3, on note XY le plus grand idéal

définissant Y (voir [14, chap. X, prop. 1.3]).

Une cubique gauche généralisée est un sous-schéma 7 de .P3 de dimension

1, tel que X7 ait une résolution graduée libre minimale (on dira pour
simplifier résolution minimale)

0 —> A2(—3) A\-2)—» J7 —> 0,

où A k[x, y, z, w] ; l'idéal X1 est alors engendré par les trois mineurs

maximaux de la matrice p (voir [14, chap. X, lemme 2.7] ou [2, thm. 1.4.16]).

On sait qu'une cubique gauche vérifie cette condition (voir [5, exemple 1.10]).

Finalement, si T — [/o,/i,/2,/3] est une application rationnelle de P3 dans

P3, on note X(T) l'idéal engendré par les fi, i 0,..., 3.
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LEMME 3.2. Soit T une transformation de Cremona de bidegré (3,3)

qui n'est ni de de Jonquières ni réglée. Si g.f\ G T(T) sont des polynômes

homogènes irréductibles génériques de degré trois, alors il existe une cubique

gauche 7 telle que

I(7)î7cy)cîr
Preuve. On note S la surface cubique irréductible d'équation g — 0 ;

puisque T n'est pas réglée, S ne contient qu'un nombre fini de points

singuliers (voir [15, chap. XV]) et est donc normale par le critère de Serre ([2,

thm. 2.2.22]). Notons ts l'application rationnelle de S dans un plan, induite

par la restriction de T à S.

Sans perte de généralité, on peut supposer

T=[gJuhJû
avec

1. ts [f\.72-/3] : S » P2 est birationnelle ;

2. g,f\ G Xy, f).fs 0 Zy, où 7 est la transformée stricte, par T, de la

droite x — y 0.

A l'application t$ correspond le système linéaire dont l'élément générique

est la transformée stricte d'une droite générique. Puisque T n'est pas de

de Jonquières, cet élément générique est une cubique gauche; en particulier
y g Ys est une cubique gauche.

Soient q\.q2. #3 trois polynômes homogènes de degré deux qui engendrent

Z"7. Il suffit de démontrer

fjqi e (g,f\)- V/ 1.2,3 Vy 2.3.

On note Q\, Qi_.Q% les sous-schémas de P3 définis par q\,q2,qs.
Par liaison (voir [14, chap. X, thm. 3.8 et prop. 3.11])

S H Qi 7 U 7/ (au sens schématique)

où les 7/ sont des cubiques dont l'idéal a une résolution

0 —* A3(-3) XuA\~2)© A(-3) —» J7i —* 0,

qui se simplifie (voir [14, page 209]) en une résolution minimale

0 —* A2(—3) A3(—2) — J7i — 0,

car la matrice de tp\ possède une ligne constante avec l'un des coefficients non
nul ; les © sont donc des cubiques gauches généralisées (cela suit aussi de [4,
exemple 1]). Pour chaque i—1,2.3, on choisit un ensemble de générateurs
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{#>22i,23i}

de Xy., constitués par des polynômes homogènes de degré deux.

Les espaces vectoriels de bases <7/, <72/, <73/ définissent sur S des systèmes

linéaires F) de dimension 2 constitués de cubiques; ils contiennent tous 7 et

Lj aussi: donc, par le lemme 3.1, ils coïncident.

Si ti\ S * P2 désigne, pour i— 1,2,3, l'application rationnelle définie

par t\ on en déduit qu'il existe un automorphisme 7 de P2

tel que
fi? $i ° fi î

d'où (en tant qu'applications définies dans S):

Uh/2,/3]

avec j/ o | [A A, Al - Puisque /i|7 0 on a ^|7u7i 0, d'où
on peut supposer q't <7/ : observer que, par construction, le diviseur sur S

associé à la fonction rationnelle q[/q{ est 0. On a donc

(7--) =0, 1 1,2,3,7 2,3,
Vi "?' / s

ou encore

Mi - Qjifi (9)> i=l, 2, 3, 7 2, 3

ce qui termine la démonstration.

Preuve du théorème. Soit T G 3 U T^). Par le lemme 3.2, il
existe des polynômes homogènes irréductibles gj\ G X(T) de degré trois et

une cubique gauche 7 tels que X(T)X1 C (<7,/i) C X7.
On sait que X1 a une résolution minimale

(1) 0 -* A2(-3) A A\-2)->J7 -> 0

Posons

{aeA:aI7C G?,/i)}

De la théorie de la liaison ([14, chap. X, thm. 3.8]) suit que J possède

une résolution minimale de la forme

0 -> A\-4)X A4(-3) -+J 0 ;

de plus l'idéal J est engendré par les mineurs maximaux de iß ([14, chap. X,
lemme 2.7] ou [2, thm. 1.4.16]), qui est une matrice 4 x 3 de formes linéaires.

Pour conclure on observe que J — X(T) : en effet, par construction X(T)
est contenu dans J et ces deux idéaux sont engendrés par 4 polynômes

homogènes de degré 3.
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