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avec mineurs 3 X 3 (considérés avec leur signe) notés Aj, Ay, Az, Ay, telle
que

T = [A1:A2:A3:A4];

—

2. T est dite de de Jonquiéres si T—1(L) est une courbe cubique plane;

—

3. T est dite réglée si T—1(H) est une surface cubique réglée.

On note T2, TJ ;. T}, les ensembles des transformations de bidegré (3,3)
qui sont déterminantielles, de de Jonquieres et réglées respectivement.

Voici le résultat principal de ce travail, qui est démontré plus loin au §3.

THEOREME 1.2. Ts3=Ty;UT];UTS;.

2. EXEMPLES

EXEMPLE 2.1. Comme on I’a vu, I’application rationnelle

T = [)”Zu"; XZW. XyW. X)’Z]

est de Cremona de bidegré (3.3). On constate qu’elle est déterminantielle de
matrice

0 0 X

0 ¥ 0

Z 0 0
- —w  —w

EXEMPLE 2.2. L’application rationnelle

2 2 2
T = [xz’.y7 2w, w’)
est une transformation de bidegré (3,3) avec inverse

T~ = xw? yw?, 22, 2w].

C’est une transformation réglée: en effet, le transformé strict d’un plan géné-
rique a I’équation

2 (ax + by) + w(cz + dw) =0,

qui est évidemment 1’équation d’une surface réglée.
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LEMME 2.3. Notons M l’idéal engendré par x,y,z. Soient q,g des
polynomes homogénes des degrés 2 et 3 respectivement tels que q € M,
g € M? et qg & M?. Supposons g irréductible. Alors I’application rationnelle
T: P> ——— P3 définie par

I' = [xq,yq,24, 9]

est une transformation de de Jonquieres.
Preuve. En effet, prenons un plan générique d’équation
ax+by+cz+dw =0;
son transformé strict est donc la surface cubique S, ., d’équation
glax+by+cz)+dg =0,

qui est aussi irréductible. D’une part les conditions sur g et g impliquent
que le point Py = [0,0,0,1] est un point double de S, . ; d’autre part la
restriction de T a S, 5,4 est (la restriction d’) une projection de centre Py
sur un plan: si s: P> — P3 est I’automorphisme associé 2 la matrice

1 0 0 O
01 0 O
0O 01 0]’
a b ¢ d

la restriction de soT a S,p .4 €st une projection de centre Py sur le plan
w = 0. On en déduit que T est birationnelle du type de de Jonquieres
puisque la transformée stricte d’une droite générique est une section plane par
Py d’une surface cubique avec un point double en Py. [

On montre dans [13, cor. 3.3.7] que Ty; N T{; = &. Cependant
T, N Ty, # & et T§3 N T§,3 # & comme il ressort des exemples qui
suivent.

EXEMPLE 2.4. Considérons les applications rationnelles
T =[x, 3, 2, wy'] et T = [0, 2y, X'z, 5z — yw] .

D’une part T est involutive, donc de Cremona de bidegré (3,3); elle est
déterminantielle de matrice
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et évidemment réglée. D’autre part, 7’ est une transformation de de Jonquieres
par le lemme 2.3 et aussi réglée.

EXEMPLE 2.5. Dans [13, chap. 4] on montre que la partie de dimension 1
de I’ensemble des points base d’une transformation réglée est de 1’'une des
formes : une droite, deux droites concourantes, trois droites concourantes non
coplanaires et trois droites non coplanaires dont I'une s’appuie sur les deux
autres. Voici un exemple de chaque cas:

Ty = [xy*,y°, 2, wx’],
Ty = [, x%y, zxy, wy’],

Ts = [y, xy%, 2% — ), yw],
Ty = [xy*, yx°, 2wy’ ] ;

avec pour inverses respectives:

T =0, 32, 2%, wy?),
Ty =07y, 2, wil,
Ty' = G = x%), 507 — 57, zyx, w(y? — 3],
T, '=14.

3. PREUVE DU THEOREME

Deux lemmes sont nécessaires pour démontrer le résultat principal.

Rappelons pour commencer que sur une variété normale W, on dispose
de la notion de systeéme linéaire sans composante fixe associé & un diviseur
de Weil: se donner un tel systtme linéaire A de dimension [ revient i se
donner une application rationnelle ¢: W——— P! telle que le transformé strict
d’un hyperplan générique de P' est un élément générique de A; de plus,
I’ensemble des points base de A coincide avec I’ensemble des points ou ¢
n’est pas définie (voir [10]).
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