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SUR LES TRANSFORMATIONS DE CREMONA
DE BIDEGRE (3,3)

par Ivan PAN')

RESUME. Dans ce travail on étudie les transformations birationnelles de P’ de
degré 3 dont I’inverse est aussi de degré 3 au moyen de la théorie de la liaison des
courbes algébriques. On distingue trois types de transformations selon la nature du
transformé strict d’un plan ou d’une droite générique.

INTRODUCTION

On désigne par k un corps algébriquement clos de caractéristique zéro,
et par P° D’espace projectif sur k; on notera [x,v,z,w] le point de P? de
coordonnées homogenes x.,y, z. w.

On rappelle qu’une application rationnelle

T:P°——— P,
peut €tre représentée comme
T(P) = [fo(P),....s(P)], PeP\{fy=-=f=0},
ou fo,...,f3 sont des polyndmes homogenes de méme degré deg(T) et

sans diviseurs communs (voir [5, §7.2]); D'entier deg(T) est appelé degré
de I’application. On dit que 7 est une transformation de Cremona si elle
possede un inverse rationnel (i.e. si elle est birationnelle); dans ce cas
(deg(T),deg(T™")) est appelé bidegré de T.

Par la suite on ne s’intéresse qu’au cas des transformations de Cremona de
bidegré (3,3), dont I’'un des exemples les plus célebres est la transformation

T = [yzw, xzw, xyw, xyz] .

') boursier du CNPq — Brésil.
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Observer que dans I'ouvert xyzw # 0, on a

T=| J
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Ces transformations ont été 1’objet d’études détaillées, voir [1], [3], [7],
[8], [9], [16] et plus récemment [12]. Ici on utilise la théorie de la liaison
des courbes algébriques ([11], [14]) pour classer ces transformations en trois
types; on donne quelques exemples et a la fin on fait le lien avec les travaux
classiques.

1. LE RESULTAT PRINCIPAL

Soit T: P> ——— P? une transformation de Cremona. On choisit des ouverts
non vides U et V de P® tels que la restriction de 7 a U induise un
isomorphisme

T:U—=V.

Soit Z C P? une sous-variété linéaire. Si Z est générique, alors ZNV # @ et
7~H(ZN'V) est une sous-variété qui ne dépend pas du choix de U et V: on

—T N—

I’appelle transformée stricte de Z par T et on la note T—1(Z) :=7-Y(Z N V).

Par définition, le degré deg(T) de T est le degré du transformé strict d’un
plan générique. Si L est une droite générique, on peut supposer que L ne
rencontre pas le lieu d’indétermination de 7—! et dans ce cas, la restriction
de 77! a L est décrite par un systéme linéaire sans points base de degré

égal au degré de T~ !; il s’ensuit que deg(7T~!) est égal au degré de T—1(L)
(voir aussi [7, chap.IX, §3]).

On note T3 3 I’ensemble des transformations de Cremona de bidegré (3,3).
La transformée stricte d’une droite générique par une telle transformation est
donc une cubique rationnelle: c’est ou bien une cubique gauche, ou bien une
cubique plane singuliere.

DEFINITIONS 1.1. Soit T € T3z et L,H C P? une droite et un plan
génériques. Alors

1. T est dite déterminantielle s’il existe une matrice a coefficients dans les
formes linéaires sur k*

ar B1om
oy 72
a3 B3 om ’

ay P4 V4
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avec mineurs 3 X 3 (considérés avec leur signe) notés Aj, Ay, Az, Ay, telle
que

T = [A1:A2:A3:A4];

—

2. T est dite de de Jonquiéres si T—1(L) est une courbe cubique plane;

—

3. T est dite réglée si T—1(H) est une surface cubique réglée.

On note T2, TJ ;. T}, les ensembles des transformations de bidegré (3,3)
qui sont déterminantielles, de de Jonquieres et réglées respectivement.

Voici le résultat principal de ce travail, qui est démontré plus loin au §3.

THEOREME 1.2. Ts3=Ty;UT];UTS;.

2. EXEMPLES

EXEMPLE 2.1. Comme on I’a vu, I’application rationnelle

T = [)”Zu"; XZW. XyW. X)’Z]

est de Cremona de bidegré (3.3). On constate qu’elle est déterminantielle de
matrice

0 0 X

0 ¥ 0

Z 0 0
- —w  —w

EXEMPLE 2.2. L’application rationnelle

2 2 2
T = [xz’.y7 2w, w’)
est une transformation de bidegré (3,3) avec inverse

T~ = xw? yw?, 22, 2w].

C’est une transformation réglée: en effet, le transformé strict d’un plan géné-
rique a I’équation

2 (ax + by) + w(cz + dw) =0,

qui est évidemment 1’équation d’une surface réglée.
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LEMME 2.3. Notons M l’idéal engendré par x,y,z. Soient q,g des
polynomes homogénes des degrés 2 et 3 respectivement tels que q € M,
g € M? et qg & M?. Supposons g irréductible. Alors I’application rationnelle
T: P> ——— P3 définie par

I' = [xq,yq,24, 9]

est une transformation de de Jonquieres.
Preuve. En effet, prenons un plan générique d’équation
ax+by+cz+dw =0;
son transformé strict est donc la surface cubique S, ., d’équation
glax+by+cz)+dg =0,

qui est aussi irréductible. D’une part les conditions sur g et g impliquent
que le point Py = [0,0,0,1] est un point double de S, . ; d’autre part la
restriction de T a S, 5,4 est (la restriction d’) une projection de centre Py
sur un plan: si s: P> — P3 est I’automorphisme associé 2 la matrice

1 0 0 O
01 0 O
0O 01 0]’
a b ¢ d

la restriction de soT a S,p .4 €st une projection de centre Py sur le plan
w = 0. On en déduit que T est birationnelle du type de de Jonquieres
puisque la transformée stricte d’une droite générique est une section plane par
Py d’une surface cubique avec un point double en Py. [

On montre dans [13, cor. 3.3.7] que Ty; N T{; = &. Cependant
T, N Ty, # & et T§3 N T§,3 # & comme il ressort des exemples qui
suivent.

EXEMPLE 2.4. Considérons les applications rationnelles
T =[x, 3, 2, wy'] et T = [0, 2y, X'z, 5z — yw] .

D’une part T est involutive, donc de Cremona de bidegré (3,3); elle est
déterminantielle de matrice
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et évidemment réglée. D’autre part, 7’ est une transformation de de Jonquieres
par le lemme 2.3 et aussi réglée.

EXEMPLE 2.5. Dans [13, chap. 4] on montre que la partie de dimension 1
de I’ensemble des points base d’une transformation réglée est de 1’'une des
formes : une droite, deux droites concourantes, trois droites concourantes non
coplanaires et trois droites non coplanaires dont I'une s’appuie sur les deux
autres. Voici un exemple de chaque cas:

Ty = [xy*,y°, 2, wx’],
Ty = [, x%y, zxy, wy’],

Ts = [y, xy%, 2% — ), yw],
Ty = [xy*, yx°, 2wy’ ] ;

avec pour inverses respectives:

T =0, 32, 2%, wy?),
Ty =07y, 2, wil,
Ty' = G = x%), 507 — 57, zyx, w(y? — 3],
T, '=14.

3. PREUVE DU THEOREME

Deux lemmes sont nécessaires pour démontrer le résultat principal.

Rappelons pour commencer que sur une variété normale W, on dispose
de la notion de systeéme linéaire sans composante fixe associé & un diviseur
de Weil: se donner un tel systtme linéaire A de dimension [ revient i se
donner une application rationnelle ¢: W——— P! telle que le transformé strict
d’un hyperplan générique de P' est un élément générique de A; de plus,
I’ensemble des points base de A coincide avec I’ensemble des points ou ¢
n’est pas définie (voir [10]).
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LEMME 3.1. Soit S C P? une surface cubique normale. Alors, tout systéme
linéaire sur S dont I’élément générique est une cubique gauche a dimension
au plus 2 ; en particulier ceux de dimension 2 sont complets.

Preuve. Tout d’abord, on rappelle que normal implique régulier en
codimension 1 (voir [6, chap. II, §6]), donc I’ensemble des points singuliers
de S a dimension zéro.

On suppose, par I’absurde, qu’il existe sur S un systeme linéaire I" de
dimension 3 constitué génériquement de cubiques gauches. Le sous-systeme
I'p, p, constitué de cubiques passant par deux points génériques Pp,P, de
S est de dimension 1. Puisque S n’est singuliere qu’en un nombre fini de
points, un plan générique H passant par P; et P, est transverse a S en tout
point, et par conséquent la section plane Cy := H NS est une cubique lisse
de genre 1. D’autre part, on a I’application rationnelle

¢:Tp p, =P —— Cy

qui a v € I'p, p, générique associe le point P, de v N H distinct de P; et
P, . Puisque < est gauche, P, n’appartient pas a la droite PP, et, quitte a
changer H, on peut supposer que ¢ s’étend en un morphisme non constant
de P! dans Cy, ce qui est impossible. [

Pour le lemme suivant et la preuve du théoreme on utilisera la théorie de
la liaison des courbes développée par Peskine et Szpiro: voir [11] ou [14,
chap. X, §3].

Si Y est un sous-schéma fermé de P3, on note Zy le plus grand idéal
définissant Y (voir [14, chap. X, prop. 1.3]).

Une cubigue gauche généralisée est un sous-schéma ~ de .P? de dimen-
sion 1, tel que Z, ait une résolution graduée libre minimale (on dira pour
simplifier résolution minimale)

0 — AX(=3) 5 A3(-2) — I, — 0,

ot A = kl[x,y,z,w]; I'idéal Z., est alors engendré par les trois mineurs
maximaux de la matrice ¢ (voir [14, chap. X, lemme 2.7] ou [2, thm. 1.4.16]).
On sait qu’une cubique gauche vérifie cette condition (voir [5, exemple 1.10]).

Finalement, si T = [fy, f1,/2.f3] est une application rationnelle de P> dans
P3, on note Z(T) I’idéal engendré par les f;, i =0,...,3.
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LEMME 3.2. Soit T une transformation de Cremona de bidegré (3,3)
qui n’est ni de de Jonquiéres ni réglée. Si g.fi € Z(T) sont des polynomes
homogeénes irréductibles génériques de degré trois, alors il existe une cubique

gauche ~y telle que
I(T)I’y - (g:fl) C I’y .

Preuve. On note S la surface cubique irréductible d’équation g = 0;
puisque T n’est pas réglée, S ne contient qu'un nombre fini de points
singuliers (voir [15, chap. XV]) et est donc normale par le critere de Serre ([2,
thm. 2.2.22]). Notons fs ’application rationnelle de S dans un plan, induite
par la restriction de 7 a S§.

Sans perte de généralité, on peut supposer

T = [g:flzf'lzf3]
avec
1. ts=[fi.fo.f3]: S—— P? est birationnelle;
2. g.fi €I, fr.fs €1y, ou v est la transformée stricte, par T, de la
droite x =y = 0.

A T'application fs correspond le systeme linéaire dont 1’él€ément généri-
que est la transformée stricte d’une droite générique. Puisque 7 n’est pas de
de Jonquieres, cet €lément générique est une cubique gauche; en particulier
v € I's est une cubique gauche.

Soient ¢i.g>.q3 trois polyndmes homogenes de degré deux qui engen-
drent Z.. Il suffit de démontrer

On note Q;.(Q>. 03 les sous-schémas de P définis par gi,42.4qs.
Par liaison (voir [14, chap. X, thm. 3.8 et prop. 3.11])

SN Q; =vU~; (au sens schématique)

ou les «; sont des cubiques dont 1’idéal a une résolution

0 — A%(=3) 25 A3 (=2) ®A(=3) — T, — 0,
qui se simplifie (voir [14, page 209]) en une résolution minimale

0 — AX=3) =5 A} (-2) — T, 0,

car la matrice de ] posséde une ligne constante avec I’un des coefficients non
nul; les ~; sont donc des cubiques gauches généralisées (cela suit aussi de (4,
exemple 1]). Pour chaque i = 1,2,3, on choisit un ensemble de générateurs
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{4i, 921, 93i }

de 7., constitués par des polynd6mes homogenes de degré deux.

Les espaces vectoriels de bases g;, g2, ¢3; définissent sur S des systemes
lin€aires I'; de dimension 2 constitués de cubiques; ils contiennent tous =y et
I's aussi: donc, par le lemme 3.1, ils coincident.

Sit:S——— P2 désigne, pour i = 1,2,3, "application rationnelle définie
par t; = [qi, q2i,¢3i], on en déduit qu’il existe un automorphisme s; de p?
tel que

Is =5i01,

d’ou (en tant qu’applications définies dans S):

[f1,/2,/3] = 14}, 901> 45
avec s; o [qi, 2i, g3i] = 14i, 3, 45;]- Puisque fi|, =0 on a g;|],uy, =0, d’ot
on peut supposer ¢; = g;: observer que, par construction, le diviseur sur §
associé a la fonction rationnelle ¢;/¢; est 0. On a donc

(%)
fi qi

:O7 i:172737j:2737

S
ou encore
iji *qj/;fl e (9)7 [ = 172;37 ]: 2737
ce qui termine la démonstration.  []

Preuve du théoreme. Soit T € Tg,,3\(T‘3‘3 U T§3). Par le lemme 3.2, il
existe des polyndomes homogenes irréductibles g,/1 € Z(T) de degré trois et
une cubique gauche ~ tels que Z(T)Z, C (g,f1) C Z,.

On sait que Z, a une résolution minimale

() 0— A*(=3) 5 A%(-2)—~ 1T, —0.

Posons
J ={a€A:al, C(g,f1)} .

De la théorie de la liaison ([14, chap. X, thm. 3.8]) suit que J possede
une résolution minimale de la forme

0— A (—4) L AY=3) = T —0;

de plus I’idéal J est engendré par les mineurs maximaux de i ([14, chap. X,
lemme 2.7] ou [2, thm. 1.4.16]), qui est une matrice 4 X 3 de formes linéaires.

Pour conclure on observe que J = Z(T) : en effet, par construction Z(T)
est contenu dans J et ces deux idéaux sont engendrés par 4 polyndmes
homogenes de degré 3. [
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4. UN COROLLAIRE ET PLUS D’EXEMPLES

COROLLAIRE 4.1.  Soit T € T3 3. On suppose qu’il existe un plan H C p?
dont le transformé strict est lisse. Alors, T est déterminantielle.

Preuve. On observe qu’on peut supposer le plan H générique. En parti-
culier T n’est pas réglée et donc, par le théoreme, il suffit de démontrer que
T n’est pas de de Jonquieres.

On note S le transformé strict de H et ' le systeme linéaire sur S défini
par les transformées strictes des droites contenues dans H. Par le théoreme
de Bertini ([6, chap. III, rem. 10.9.1]), un élément générique de I ne peut
avoir de singularités que sur I’ensemble des points base de I'. Puisque cet
ensemble est fini, s1 7" était de de Jonquieres, il existerait P € § tel que
I’élément générique de I' serait une section plane de S singuliére en P :
puisque I' a dimension deux, ceci contredit que § soit lisse. [

REMARQUE. La preuve du corollaire montre que pour une transformation
de de Jonquieres, le transformé strict d’'un plan générique posséde un point
double qui, par le théoreme de Bertini, sera fixe si T n’est pas réglée.

Si T:P°>——— P3 est une application rationnelle, le schéma de base B(T)
de T est, par définition, le sous-schéma de P> défini par 'idéal Z(T).

EXEMPLE 4.2. Si T est une transformation de Cremona telle que B(T)
est une courbe (réduite) irréductible et lisse, alors 7 € T?3: en utilisant
[4, exemple 2], c’est un cas particulier de [12]; voir aussi [7, chap. XIV,§11].

EXEMPLE 4.3. Si T' = [fo,fi,./3] € T23, on a un complexe

)

0 — A3(—4) 2L g4(—3) LI oy

ou M est une matrice dont les mineurs maximaux définissent 7. Par [14,
chap. X, lemme 2.7] ou le théoréme de Buchsbaum-Eisenbud [2, thm. 1.4.12],
ce complexe est exact.

EXEMPLE 4.4. La transformation 7 de I’exemple 1.2 n’est pas détermi-

nantielle. D aprés ’exemple ci-dessus, il suffit de monrer que Z(T) possede
la résolution minimale

0 — A(=5) =5 A3 (—4) ® A(-5) 25 AY(=3) 2% T(T) — 0,
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ou
X 0 —z y -—a
y Z 0 —x -—b
=1 T 2 0~ | 2 = (xq,¥4,29, 9)
0 0 0 0 g
et

g=ax-+by-+cz.

En effet, il est clair que Im(yp;) C Ker(ypy); réciproquement, puisque
pgcd(g,g) =1 et x,y,z est une suite A-régulicre, on a

o= € Ker(ypy) <= (aix+ axy+aszg)g+asg =20

04 = /84q> et
< dfs€A: { (a1 + Baa)x + (a2 + Pab)y
+ (a3 + B4c)z =0

: 301(/6) = Q,
fa

d’ou Im(p;) D Ker(yp,) ; en utilisant encore une fois que x,y,z est une suite
A-réguliere, on obtient Ker(yp;) = Im(pp) ; enfin ¢y est banalement injective.

REMARQUE. Pour finir, on donne (sans démonstration) quelques précisions
sur les sous-ensembles Tzz, TD,, T3, et TR, (voir [13]):

1. T3 3 est un sous-ensemble constructible et connexe de dimension 39, dans
la variété quasi-projective des applications rationnelles de degré 3.

2. T13) 3 Tg 5 et T§3 sont des sous-ensembles constructibles et irréeductibles
de dimensions 39, 38 et 31 respectivement, avec T?3 ﬂTg3 = .

3. Soit T € Tas", on = € {D,J,R}; notons pgr) le polynéme de Hilbert
de B(T). Alors, on a des résolutions minimales de la forme :

(a) pour x =D,
0 — A%(—4) — AY=3) — Z(T) — 0;

en particulier
pB(T)(t) = 61— 2.
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(b) pour x =J,

0 — A(—5) — AX(—4) ® A(=5) — A (=3) — IZ(T) — O;

en particulier
PB(T)(f) =6t—2.

(c) pour * =R et T générique,
0 — A(—6) — (A(=5) ® A(—4)? — A*(=3) — I(T) — 0;

en particulier
DPB(T) = 5t+1 .

et donc T ¢ TS5 UT} ;.

5. COMPARAISON AVEC LES RESULTATS CLASSIQUES

Soit T: P> ——— P3 une transformation de Cremona; on note Ar le systéme
linéaire correspondant: un élément générique de Ay est donc le transformé
strict d’un plan générique. Si S, S’ € Ar sont génériques, alors I'intersection
schématique S NS’ est la réunion de la transformée stricte v d’une droite
générique et d’un 1-cycle fixe w dont le support est contenu dans 1’ensemble
des points base de T ; en particulier deg(w) = deg(7)* — deg(T~!). Dans le
cas de bidegré (3,3) on a deg(w) = 6, et on écrit weg = w.

Si O est un point singulier de S, pour tout S € Ar, on dit:

(i) O est un point double ordinaire pour Ar si les cOnes tangents en O
des éléments génériques de A7 sont non dégénérés et sans génératrice
commune;

(i1) O est un point double de contact pour Ar si les cOnes tangents en O
des éléments génériques de Ay sont non dégénérés et coincident.

Dans [7, chap. XIV, page 295 et table VI], Hilda Hudson, qui ne considere
apparemment que des situations génériques, affirme qu’il y a quatre types de
transformations de bidegré (3,3). Plus précisemment, elle distingue quatre cas
suivant la nature du lieu des points singuliers X(S) d’un élément générique

S € Ar et celle de we (on indique entre parentheéses le type correspondant 2
notre définition 1.1):
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(a) S est lisse (D);
(b) 2(S) est discret et

(bl) contient un point double O ordinaire pour Ay qui est un point
double pour wg (J), ou bien

(b2) contient un point double O de contact pour Ar qui est un point
quadruple pour wg (J);
(c) Z(S) est une droite (R).
Dans le cas (a), T est déterminantielle d’apres le corollaire, et dans le cas
(c) elle est évidemment réglée. Les deux cas (b) fournissent des transformations
de de Jonquieres: en effet, les hypotheses impliquent que O est un point

multiple de SNS' de multiplicité 4 pour (bl) ou 6 pour (b2), et donc que O
est un point double de ~.

A partir du lemme 2.3 on construit facilement des transformations vérifiant
les conditions (b): pour (bl) prendre g et g génériques, et pour (b2) choisir
g € M? et g générique. '

Dans [3] L. Cremona ne prétend pas a une classification mais se propose
seulement de démontrer la simplicité et la fécondit¢ de sa méthode de
construction de transformations birationnelles (pour un exposé de cette méthode
voir aussi [16, chap. VIII]); il étudie en détail cinq cas:

(1) S est lisse (D);
(2) S est réglée (R);

(3) § contient deux points doubles P;,P, ordinaires pour Ar, et weg est
la réunion de la droite P;P, et d’une quintique rationnelle avec deux
points doubles en P; et P, (D) ou avec un point triple en P; et passant
simplement par P> (J);

(4) S contient trois points doubles Pj, Py, P3 ordinaires pour Ar et we est
la réunion des trois droites P;P; et d’une cubique gauche passant par
les P; (D);

(5) S contient un point double O de contact uniplanaire pour Ar (i.e. le
cone tangent en O d’un élément générique de Ar est dégénéré en un
plan double) et wg a un point quadruple en O (J).
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