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L'Enseignement Mathématique, t. 43 (1997), p. 285-297

SUR LES TRANSFORMATIONS DE CREMONA

DE BIDEGRÉ (3,3)

par Ivan Pan1)

RÉSUMÉ. Dans ce travail on étudie les transformations birationnelles de P3 de

degré 3 dont l'inverse est aussi de degré 3 au moyen de la théorie de la liaison des

courbes algébriques. On distingue trois types de transformations selon la nature du
transformé strict d'un plan ou d'une droite générique.

Introduction

On désigne par k un corps algébriquement clos de caractéristique zéro,
et par P3 l'espace projectif sur k ; on notera [x, y, z: w\ le point de P3 de

coordonnées homogènes x,y,z:w.
On rappelle qu'une application rationnelle

T:P3» P3,

peut être représentée comme

t(p)m n, pep3\ {/„ • • • =/3 o},
°ù /o, • • • sont des polynômes homogènes de même degré deg(T) et
sans diviseurs communs (voir [5, §7.2]); l'entier deg(T) est appelé degré
de l'application. On dit que T est une transformation de Cremona si elle
possède un inverse rationnel (i.e. si elle est birationnelle) ; dans ce cas
(deg(T), deg(T~')) est appelé bidegré de T.

Par la suite on ne s'intéresse qu'au cas des transformations de Cremona de
bidegré (3,3), dont l'un des exemples les plus célèbres est la transformation

T - [yzw,xzw,xyw,xyz]

' boursier du CNPq — Brésil.
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Observer que dans l'ouvert xyzw ^0, on a

d'où T T~l.
Ces transformations ont été l'objet d'études détaillées, voir [1], [3], [7],

[8], [9], [16] et plus récemment [12]. Ici on utilise la théorie de la liaison
des courbes algébriques ([11], [14]) pour classer ces transformations en trois

types; on donne quelques exemples et à la fin on fait le lien avec les travaux

classiques.

1. Le résultat principal

Soit T : P3 » P3 une transformation de Cremona. On choisit des ouverts

non vides U et V de P3 tels que la restriction de T à U induise un

isomorphisms

T:U -*V.
Soit Z C P3 une sous-variété linéaire. Si Z est générique, alors ZnV ^ 0 et

t-1(Z D V) est une sous-variété qui ne dépend pas du choix de U et V : on

l'appelle transformée stricte de Z par T et on la note T~l(Z) := r_1(Zfl V).
Par définition, le degré deg(T) de T est le degré du transformé strict d'un

plan générique. Si L est une droite générique, on peut supposer que L ne

rencontre pas le lieu d'indétermination de T~x et dans ce cas, la restriction
de T~l à L est décrite par un système linéaire sans points base de degré

égal au degré de T~l ; il s'ensuit que deg(L_1) est égal au degré de T~l(L)
(voir aussi [7, chap.IX, §3]).

On note T353 l'ensemble des transformations de Cremona de bidegré (3,3).
La transformée stricte d'une droite générique par une telle transformation est

donc une cubique rationnelle: c'est ou bien une cubique gauche, ou bien une

cubique plane singulière.

Définitions 1.1. Soit T G T3?3 et L,H C P3 une droite et un plan
génériques. Alors

1. T est dite déterminantielle s'il existe une matrice à coefficients dans les

formes linéaires sur k4

/ Oii ßi 7i \
OL2 ßl 11

Oi3 ßl 73

V a4 /?4 74 /
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avec mineurs 3x3 (considérés avec leur signe) notés Aj.A2.A3,A4, telle

que

T [Aj, A2, A3, A4] ;

2. T est dite de de Jonquières si T~l(L) est une courbe cubique plane;

3. T est dite réglée si T~l(H) est une surface cubique réglée.

On note T»3; T£3 les ensembles des transformations de bidegré (3,3)

qui sont déterminantielles, de de Jonquières et réglées respectivement.

Voici le résultat principal de ce travail, qui est démontré plus loin au §3.

Théorème 1.2. T3 3 t£3 u T*
3 u T^3.

2. Exemples

Exemple 2.1. Comme on l'a vu, l'application rationnelle

T [yzw. xzw. xyw. xyz]

est de Cremona de bidegré (3,3). On constate qu'elle est déterminantielle de
matrice

/ 0 0 x \
0 )' 0

z 0 0

\ —IV —w —iv j
Exemple 2.2. L'application rationnelle

t' r 2 ^ 9 3 t1 - [xz .yz~*zu-~: w ]

est une transformation de bidegré (3,3) avec inverse

T~l [xw2,yw2.z3:z2w].

C'est une transformation réglée: en effet, le transformé strict d'un plan générique

a l'équation

z~{ax + by) + w2(cz + dw) 0

qui est évidemment l'équation d'une surface réglée.
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LEMME 2.3. Notons A4 l'idéal engendré par x,y,z. Soient q,g des

polynômes homogènes des degrés 2 et 3 respectivement tels que q G A4,

g G A42 et qg ^ A45. Supposons g irréductible. Alors l'application rationnelle
T : P3 * P3 définie par

T [xq,yq,zq,g]

est une transformation de de Jonquières.

Preuve. En effet, prenons un plan générique d'équation

ax + by -f cz + dw 0 ;

son transformé strict est donc la surface cubique Sa,b,c,d d'équation

q(ax + by + cz) + dg 0

qui est aussi irréductible. D'une part les conditions sur q et g impliquent
que le point Po [0,0,0,1] est un point double de Sa^,c,d ; d'autre part la

restriction de f à Sa,b,c:d est (la restriction d') une projection de centre Pq

sur un plan: si s: P3 —» P3 est l'automorphisme associé à la matrice

/I 0 0 0\
0 10 0

0 0 10'
\a b c d

la restriction de s oT à Sa,b,c,d est une projection de centre Po sur le plan

w — 0. On en déduit que T est birationnelle du type de de Jonquières

puisque la transformée stricte d'une droite générique est une section plane par
Po d'une surface cubique avec un point double en Po.

On montre dans [13, cor. 3.3.7] que T3 3 D T33 0. Cependant

t3R3 n t°3 ^ 0 et 1*3 n t-E ï 0 comme il ressort des exemples qui
suivent.

Exemple 2.4. Considérons les applications rationnelles

T [xy2,yx2,zx2,wy2] et T' [x3,x2y,x2z,x2z — y2w].

D'une part T est involutive, donc de Cremona de bidegré (3,3); elle est

déterminantielle de matrice

x w 0 \
-y 0 z

0 0 -y
V 0 —x 0
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et évidemment réglée. D'autre part, T' est une transformation de de Jonquières

par le lemme 2.3 et aussi réglée.

Exemple 2.5. Dans [13, chap. 4] on montre que la partie de dimension 1

de l'ensemble des points base d'une transformation réglée est de l'une des

formes : une droite, deux droites concourantes, trois droites concourantes non

coplanaires et trois droites non coplanaires dont l'une s'appuie sur les deux

autres. Voici un exemple de chaque cas :

T] [xy2, y\ 7x2. wx2],

To [x3,x2y,zxy, wy1],

r3 [x2y,xy2, z(y2

T4[xy2,yx2,zx2,wy2] ;

avec pour inverses respectives :

Tfs[A. yx2

T 'f1 [xy2.y3,zxy

A"' [x(r - x2),zyx, w(y2 - x2)],

T,17V.

3. Preuve du théorème

Deux lemmes sont nécessaires pour démontrer le résultat principal.
Rappelons pour commencer que sur une variété normale W, on dispose

de la notion de système linéaire sans composante fixe associé à un diviseur
de Weil: se donner un tel système linéaire A de dimension / revient à se
donner une application rationnelle <fr: WPl telle que le transformé strict
d'un hyperplan générique de P' est un élément générique de A; de plus,
l'ensemble des points base de A coïncide avec l'ensemble des points où é
n'est pas définie (voir [10]).
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LEMME 3.1. Soit S C P3 une surface cubique normale. Alors, tout système

linéaire sur S dont l'élément générique est une cubique gauche a dimension

au plus 2 ; en particulier ceux de dimension 2 sont complets.

Preuve. Tout d'abord, on rappelle que normal implique régulier en

codimension 1 (voir [6, chap. II, §6]), donc l'ensemble des points singuliers
de S a dimension zéro.

On suppose, par l'absurde, qu'il existe sur S un système linéaire F de

dimension 3 constitué génériquement de cubiques gauches. Le sous-système

TPup2 constitué de cubiques passant par deux points génériques P\,P2 de

S est de dimension 1. Puisque S n'est singulière qu'en un nombre fini de

points, un plan générique H passant par Pi et P2 est transverse à S en tout

point, et par conséquent la section plane Ch := H D S est une cubique lisse

de genre 1. D'autre part, on a l'application rationnelle

0: rPl)PlP1 — CH

qui à 7 G Tpl :p2 générique associe le point P7 de 7 H H distinct de Pi et

P2. Puisque 7 est gauche, P7 n'appartient pas à la droite P1P2 et, quitte à

changer //, on peut supposer que f s'étend en un morphisme non constant
de P1 dans C#, ce qui est impossible.

Pour le lemme suivant et la preuve du théorème on utilisera la théorie de

la liaison des courbes développée par Peskine et Szpiro: voir [11] ou [14,

chap. X, §3].

Si Y est un sous-schéma fermé de P3, on note XY le plus grand idéal

définissant Y (voir [14, chap. X, prop. 1.3]).

Une cubique gauche généralisée est un sous-schéma 7 de .P3 de dimension

1, tel que X7 ait une résolution graduée libre minimale (on dira pour
simplifier résolution minimale)

0 —> A2(—3) A\-2)—» J7 —> 0,

où A k[x, y, z, w] ; l'idéal X1 est alors engendré par les trois mineurs

maximaux de la matrice p (voir [14, chap. X, lemme 2.7] ou [2, thm. 1.4.16]).

On sait qu'une cubique gauche vérifie cette condition (voir [5, exemple 1.10]).

Finalement, si T — [/o,/i,/2,/3] est une application rationnelle de P3 dans

P3, on note X(T) l'idéal engendré par les fi, i 0,..., 3.
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LEMME 3.2. Soit T une transformation de Cremona de bidegré (3,3)

qui n'est ni de de Jonquières ni réglée. Si g.f\ G T(T) sont des polynômes

homogènes irréductibles génériques de degré trois, alors il existe une cubique

gauche 7 telle que

I(7)î7cy)cîr
Preuve. On note S la surface cubique irréductible d'équation g — 0 ;

puisque T n'est pas réglée, S ne contient qu'un nombre fini de points

singuliers (voir [15, chap. XV]) et est donc normale par le critère de Serre ([2,

thm. 2.2.22]). Notons ts l'application rationnelle de S dans un plan, induite

par la restriction de T à S.

Sans perte de généralité, on peut supposer

T=[gJuhJû
avec

1. ts [f\.72-/3] : S » P2 est birationnelle ;

2. g,f\ G Xy, f).fs 0 Zy, où 7 est la transformée stricte, par T, de la

droite x — y 0.

A l'application t$ correspond le système linéaire dont l'élément générique

est la transformée stricte d'une droite générique. Puisque T n'est pas de

de Jonquières, cet élément générique est une cubique gauche; en particulier
y g Ys est une cubique gauche.

Soient q\.q2. #3 trois polynômes homogènes de degré deux qui engendrent

Z"7. Il suffit de démontrer

fjqi e (g,f\)- V/ 1.2,3 Vy 2.3.

On note Q\, Qi_.Q% les sous-schémas de P3 définis par q\,q2,qs.
Par liaison (voir [14, chap. X, thm. 3.8 et prop. 3.11])

S H Qi 7 U 7/ (au sens schématique)

où les 7/ sont des cubiques dont l'idéal a une résolution

0 —* A3(-3) XuA\~2)© A(-3) —» J7i —* 0,

qui se simplifie (voir [14, page 209]) en une résolution minimale

0 —* A2(—3) A3(—2) — J7i — 0,

car la matrice de tp\ possède une ligne constante avec l'un des coefficients non
nul ; les © sont donc des cubiques gauches généralisées (cela suit aussi de [4,
exemple 1]). Pour chaque i—1,2.3, on choisit un ensemble de générateurs
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{#>22i,23i}

de Xy., constitués par des polynômes homogènes de degré deux.

Les espaces vectoriels de bases <7/, <72/, <73/ définissent sur S des systèmes

linéaires F) de dimension 2 constitués de cubiques; ils contiennent tous 7 et

Lj aussi: donc, par le lemme 3.1, ils coïncident.

Si ti\ S * P2 désigne, pour i— 1,2,3, l'application rationnelle définie

par t\ on en déduit qu'il existe un automorphisme 7 de P2

tel que
fi? $i ° fi î

d'où (en tant qu'applications définies dans S):

Uh/2,/3]

avec j/ o | [A A, Al - Puisque /i|7 0 on a ^|7u7i 0, d'où
on peut supposer q't <7/ : observer que, par construction, le diviseur sur S

associé à la fonction rationnelle q[/q{ est 0. On a donc

(7--) =0, 1 1,2,3,7 2,3,
Vi "?' / s

ou encore

Mi - Qjifi (9)> i=l, 2, 3, 7 2, 3

ce qui termine la démonstration.

Preuve du théorème. Soit T G 3 U T^). Par le lemme 3.2, il
existe des polynômes homogènes irréductibles gj\ G X(T) de degré trois et

une cubique gauche 7 tels que X(T)X1 C (<7,/i) C X7.
On sait que X1 a une résolution minimale

(1) 0 -* A2(-3) A A\-2)->J7 -> 0

Posons

{aeA:aI7C G?,/i)}

De la théorie de la liaison ([14, chap. X, thm. 3.8]) suit que J possède

une résolution minimale de la forme

0 -> A\-4)X A4(-3) -+J 0 ;

de plus l'idéal J est engendré par les mineurs maximaux de iß ([14, chap. X,
lemme 2.7] ou [2, thm. 1.4.16]), qui est une matrice 4 x 3 de formes linéaires.

Pour conclure on observe que J — X(T) : en effet, par construction X(T)
est contenu dans J et ces deux idéaux sont engendrés par 4 polynômes

homogènes de degré 3.
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4. Un corollaire et plus d'exemples

Corollaire 4.1. Soit T G T3;3. On suppose qu'il existe un plan H c P3

dont le transformé strict est lisse. Alors, T est déterminantielle.

Preuve. On observe qu'on peut supposer le plan H générique. En
particulier T n'est pas réglée et donc, par le théorème, il suffit de démontrer que
T n'est pas de de Jonquières.

On note S le transformé strict de if et T le système linéaire sur S défini

par les transformées strictes des droites contenues dans H. Par le théorème

de Bertini ([6, chap. III, rem. 10.9.1]), un élément générique de F ne peut
avoir de singularités que sur l'ensemble des points base de F. Puisque cet
ensemble est fini, si T était de de Jonquières, il existerait P G S tel que
l'élément générique de F serait une section plane de S singulière en P :

puisque F a dimension deux, ceci contredit que S soit lisse.

Remarque. La preuve du corollaire montre que pour une transformation
de de Jonquières, le transformé strict d'un plan générique possède un point
double qui, par le théorème de Bertini, sera fixe si T n'est pas réglée.

Si T : P3 > P3 est une application rationnelle, le schéma de base B(T)
de T est, par définition, le sous-schéma de P3 défini par l'idéal X(T).

Exemple 4.2. Si T est une transformation de Cremona telle que B{T)
est une courbe (réduite) irréductible et lisse, alors T G T3 3 : en utilisant
[4, exemple 2], c'est un cas particulier de [12]; voir aussi [7, chap. XIV,§11].

Exemple 4.3. Si T' [/b,/i,/2,/3] G T33, on a un complexe

0 —> A3(—4) -^L, A4(—3) (/°/l/2/3)> —> 0,

où M est une matrice dont les mineurs maximaux définissent T'. Par [14,
chap. X, lemme 2.7] ou le théorème de Buchsbaum-Eisenbud [2, thm. 1.4.12],
ce complexe est exact.

Exemple 4.4. La transformation T de l'exemple 1.2 n'est pas
déterminantielle. D'après l'exemple ci-dessus, il suffit de monrer que possède
la résolution minimale

0 —» A(—5) ^ A3(—4) © A(—5) A4(—3) 0
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OU

PO

fx\ o —z y —a\

y z 0 —x -b
z

s Pl -y X 0 —c

w \ 0 0 0 g /

ip2 (xq,yq,zq,g)

et

g ax + by + cz.

En effet, il est clair que Im(<^i) C Ktr(p2) ; réciproquement, puisque

pgcd(g,g) =1 et x,y,z est une suite A-régulière, on a

fa,\
Oi2

a :=
a3

\a4J

G Ker(p2) (aix + a2y + a3z)q + a4g 0

a4 ß4q, et

3 ß4 G A : ^ (ai + ß4a)x + (<x2 ~b ,/?4b)y

+ (ct3 + ß4c)z — 0

3ß:= : (fi(ß) a.

d'où Im((^i) D Ker(c^2) ; en utilisant encore une fois que x,y,z est une suite

A-régulière, on obtient Ker(</?i) Im(<£o) ; enfin ipo est banalement injective.

REMARQUE. Pour finir, on donne (sans démonstration) quelques précisions

sur les sous-ensembles T3j3, T33, T3 3 et Tf3 (voir [13]):

1. T3j3 est un sous-ensemble constructible et connexe de dimension 39, dans

la variété quasi-projective des applications rationnelles de degré 3.

2- T3 3, T3 3 et T^3 sont des sous-ensembles constructibles et irréductibles

de dimensions 39, 38 et 31 respectivement, avec T33 n

3. Soit T G T3)3* f où * G {D, J. R} ; notons Pb(T) le polynôme de Hilbert
de B(T). Alors, on a des résolutions minimales de la forme :

(a) pour * D,

0 —> A3(—4) —» A4(—3) —» 2(2") —* 0 ;

en particulier
PB(T)(f) — 6t — 2
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(b) pour * J,

0 —> A(—5) —» A3(-4)©A(-5) —» A4(-3) —>

en particulier
PB(T)(t) 6t ~ 2

(c) pour *= R et T générique,

0 —> A(—6) —> (A(—5) © A(—4))2 —f A4(—3) —+ 1(7*)

en particulier

PB(T) 5/" + 1,

et donc T ^ T3 3 U T3 3.

5. Comparaison avec les résultats classiques

Soit T: P3 * P3 une transformation de Cremona; on note AT le système

linéaire correspondant: un élément générique de AT est donc le transformé

strict d'un plan générique. Si S, Sf £ AT sont génériques, alors l'intersection

schématique S H S' est la réunion de la transformée stricte 7 d'une droite

générique et d'un 1-cycle fixe u dont le support est contenu dans l'ensemble
des points base de T ; en particulier deg(u;) deg(7")2 — deg(r-1). Dans le

cas de bidegré (3,3) on a deg(o;) 6, et on écrit tüß lu

Si O est un point singulier de S, pour tout S £ AT, on dit:

(i) O est un point double ordinaire pour Aj si les cônes tangents en O

des éléments génériques de AT sont non dégénérés et sans génératrice

commune ;

(ii) O est un point double de contact pour AT si les cônes tangents en O

des éléments génériques de AT sont non dégénérés et coïncident.

Dans [7, chap. XIV, page 295 et table VI], Hilda Hudson, qui ne considère

apparemment que des situations génériques, affirme qu'il y a quatre types de

transformations de bidegré (3,3). Plus précisemment, elle distingue quatre cas
suivant la nature du lieu des points singuliers £(S) d'un élément générique
S £ At et celle de lj6 (on indique entre parenthèses le type correspondant à

notre définition 1.1):

295

0;

0;
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(a) S est lisse (D);

(b) E(1S') est discret et

(bl) contient un point double O ordinaire pour Aj qui est un point
double pour ujß (J), ou bien

(b2) contient un point double O de contact pour Aj qui est un point
quadruple pour uß (J);

(c) L(S) est une droite (R).

Dans le cas (a), T est déterminantielle d'après le corollaire, et dans le cas

(c) elle est évidemment réglée. Les deux cas (b) fournissent des transformations
de de Jonquières: en effet, les hypothèses impliquent que O est un point
multiple de S H S' de multiplicité 4 pour (bl) ou 6 pour (b2), et donc que O

est un point double de 7.
A partir du lemme 2.3 on construit facilement des transformations vérifiant

les conditions (b) : pour (bl) prendre q et g génériques, et pour (b2) choisir

q G M2 et g générique.

Dans [3] L. Cremona ne prétend pas à une classification mais se propose
seulement de démontrer la simplicité et la fécondité de sa méthode de

construction de transformations birationnelles (pour un exposé de cette méthode

voir aussi [16, chap. VIII]); il étudie en détail cinq cas:

(1) S est lisse (D);

(2) S est réglée (R);

(3) S contient deux points doubles P\.P2 ordinaires pour A7, et ujß est

la réunion de la droite P1P2 et d'une quintique rationnelle avec deux

points doubles en P\ et P2 (D) ou avec un point triple en P\ et passant

simplement par P2 (J);

(4) S contient trois points doubles Pi. P2) P3 ordinaires pour Aj et uj6 est

la réunion des trois droites PLPj et d'une cubique gauche passant par
les Pi (D);

(5) S contient un point double O de contact uniplanaire pour Aj {i.e. le

cône tangent en O d'un élément générique de AT est dégénéré en un

plan double) et uj6 a un point quadruple en O (J).
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