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20 S. TABACHNIKOV

REMARK. The following result is also known (see the literature cited): if
a convex closed curve intersects a curve, homothetic to J, at 2n points then
it has at least 2n Minkowski vertices.

5. CONSERVATIVE TRANSVERSE LINE FIELDS

In this section we discuss the following problem: given a smooth strictly
convex closed plane curve 7 and a smooth transverse line field / along it,
when does a parameterization ~y(¢) exist such that the line I(¢) at point ~y(f)
is generated by the acceleration vector () for all ¢ ?

DEFINITION. A transverse line field along a closed plane curve, generated
by the acceleration vectors for some parameterization of the curve, is called
conservative.

Clearly, not every line field is conservative : consider, for example, a field
of lines that everywhere make an acute angle with the curve. Theorem 0.1
provides a necessary condition: the envelope of the lines from a conservative
line field has at least 4 cusps. Lemma 3.2 gives another one: there exist at
least 2 tangent lines to this envelope through every point in the plane.

We start with the following situation. Let M> be a contact manifold and
let v C M be a closed smooth Legendrian curve. Recall that the characteristic
line field n of a contact form A is the field Ker d\. Assume that the contact
distribution along 7 is coorientable; then it can be determined by a contact
form. Let 1 be a line field along , transverse to the contact distribution.

QUESTION. When does a contact form exist in a vicinity of .7y for which
1 is the characteristic field ?

When this is the case we call the field 1 characteristic.

Let A be some contact form near v and let v be a vector field along ~
that generates the line field n. Consider the 1-form (i, d\)/A(v) and set

~ Iy dA

8

THEOREM 5.1. The number (B(,n) does not depend on the choice of the
contact form X\ nor the vector field v. This number vanishes if and only if
the field m is characteristic.
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Proof. Clearly, (i, d\)/Mv) does not change if v is multiplied by a
nonvanishing function. Let A; = fA with f # 0 be another contact form.
Then dA\{ =df A+ fdX. One has

/ iy dh /f iy d\ +df(v) A — Av) df
OIS f A)

i, dA df (v) df

— A — pers o

/:Y o) A LT

The second integral on the right hand side vanishes because v is a Legendrian
curve, tangent to the kernel of df(v)A/fA(v), and so does the third because
df /f is an exact 1-form. Thus 8(7,n) does not depend on the choices involved.

If 7 is characteristic for a contact form A then i, dA =0, so G(y,n) = 0.
Conversely, let 5(y,n) = 0. A neighbourhood of % in M is contactomorphic
to a neighbourhood of the zero section in the space of 1-jets J'S! (see [A 3]).
That is, there exist coordinates (x,y,z), x € S', y,z € R! in which the
contact structure 1s given by the 1-form A\g = dz — ydx, and 7 is the curve
y =z =20. Since 7 is transverse to the contact structure one may assume it
to be generated by the vector field

v = a(x) 0/0x + b(x) 0/0y + 8/0z,

where a(x) and b(x) are functions on the circle.

Then -
~ . Ly 0 o
5(%77)—A o) /b(x) dx .

If B(7,7n) vanishes then there exists a function g(x) such that b(x) = g (x).
Next, a direct computation shows that the characteristic line field of the contact
form ¢/®? )\, is generated by the vector field

fy 0/0x — (fi+yf) 0/8y + (1 + yf,) 8/0z,
which equals, along 7,
u=f, 0/0x—f, 9/0y+0/0z.

Therefore, setting f(x,y,z) = a(x)y — g(x), one has: v = u, and the field n
is characteristic.

Thus the characteristic line fields constitute a codimension 1 subspace in
the (infinite dimensional) space of line fields along 7, transverse to the contact
structure.

Return to the situation at the beginning of the section. Let v be a smooth
strictly convex closed curve, cooriented inwards, and let / be a smooth

S o s s
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transverse line field along 7. As before, 7 is the Legendrian curve in the
space of cooriented contact elements ST*R?, corresponding to . For every
point x € v consider the family of cooriented contact elements along the line
I(x), parallel to the contact element of « at x. This gives a line field n along
7, a lift of the field /. The field n is transverse to the contact structure.

Choose a parameterization y(7), 0 <t < T, and a vector field u(¢) along
v that generates the line field (7).

LEMMA 5.2. One has:

g T y"@®), u@)
oy = | LD
o /0 v 0, u0] “

Proof. Let v be the lift of u to ST*R? that generates the field
n. In Theorem 2.1 a Hamiltonian function H in ST*R? is constructed,
associated with the parameterization ~y(f) (one does not need the assumption
[’y’ (@), ~" (t)} +# 0 here). The space ST*R? is identified with R? xS, where the
star-shaped curve S C (R?)*, the level curve of H, consists of the covectors
[v/(£), ]. The corresponding contact form A is the restriction of the Liouville
form pdg to R? x S. The curve 7 is given by the formula:

YO = 0@, YO, D.
It follows that A(v(r)) = [v'(®), u(t)] . Likewise,

(indN) (T (1) = Gudp Adg) (T @) = [v'®), u®)] .

/iv d\ /T " @0,u®]
5 A) o [Y®u®]
In particular, the value of the integral

/T [y (0), u(®)] 0
o [Y(®,u®)]

Therefore

The lemma is proved.

does not depend on the parameterization ~y(#) nor on the choice of the vector
field u(¢). Denote this integral by a(v,]).
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LEMMA 5.3. The line field | along ~ is conservative if and only if the
line field m along 7 is characteristic.

Proof. If [ is generated by the vectors ~”(f) then 7 consists of the
characteristic directions of the contact form in ST*R?, associated with the
parameterization ~y(¢) in Theorem 2.1 (cf. the proof of the preceding lemma).

Conversely, a contact form A along 7, whose characteristics are the lines
n, is a field of covectors p along = which vanish on the tangent lines to -~y
at the respective points. Define the parameterization y(f) by the condition:
[v' (1), 1=p (4(2)) for all . Then the contact form in ST*R?, associated
with this parameterization according to Theorem 2.1, coincides with A along
~. Therefore the lines [(f) are generated by the vectors " (7).

Combining Theorem 5.1, Lemma 5.2 and 5.3, one arrives at the following
result (discovered in [T 2] and proved therein by a direct computation).

THEOREM 5.4. A transverse line field | along a smooth strictly convex
closed plane curve v is conservative if and only if a(v,[l) = 0.

Thus conservative line fields constitute a codimension one subspace in the
space of transverse line fields along a closed curve.

EXAMPLE. L. Guieu and V. Ovsienko studied the following situation
in [G-O]. Given a smooth convex closed plane curve consider the field of
lines connecting each point of the curve with a focus of its osculating conic
at this point (see Example 2 in Section 3). This line field is conservative,
and 1ts envelope, called the gravitational caustic in [G-O], has at least 6
Cusps.

Consider a curve ~ with a transverse line field /. A (partial) diffeomorphism
of the plane F takes v to a new curve F(v) with the transverse line field
dF(l). The field dF(l) does not have to be conservative even if [/ is.

EXAMPLE. Let « be the unit circle, [ consists of its normals, and F
is given near 7 in polar coordinates by the formula: (o, r) — (a + r,r).

Then F(y) = v, and the lines dF(I) make a constant acute angle with the
circle.

However the following result holds (to answer a question by V. Arnold).

THEOREM 5.5. Every projective transformation of the plane takes the
conservative line fields to the conservative ones.
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Proof. Consider R? as the plane {z =1} in Euclidean 3-space, and let

T (x,y,2) — (x/z,y/2)

be the projection of the half-space R: = {z > 0} on R?. Consider a
parametrized curve I'(f) C R3., and let v(r) = (I (D).

Claim : the field (dm) (F” (t)) is conservative along the curve (7).

Indeed, a direct computation (which is left to the reader) shows that

Z(1)

@m (@) =7"0+2 -

Y (®)-

Therefore

Z(1)
z(1)

a(y, @I ®)) = - / 2 dt = —2 / d log z(t) =0.

The claim follows from Theorem 5.4.

Let A be a linear transformation of space. Then F = wA : R? — R? is a
projective transformation, and all projective transformations are obtained this
way. Consider a curve v(f) C R?, and let I(f) be generated by the acceleration
vectors v"(r). Let I'(tf) = A(y(1)) ; assume, without loss of generality, that
') C Ri One has: I'(1) = A(fy” (t)), and it follows from the above claim
that the field (d7)(I"'(s)) is conservative along the curve m(I'(7)). Thus the
line field dF(I) is conservative along the curve F(7).

REMARK. Theorem 5.5 shows that the notion of the conservative line
fields along closed curves is a projective, and not an affine, one. Thus one
hopes that the theory of this paper can be extended to spherical curves in the
spirit of [A 5].
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ADDED IN PROOF. A higher dimensional analog of conservative transverse
line fields is studied in the author’s paper “Exact transverse line fields
and projective billiards in a ball”, to appear in “Geometric and Functional
Analysis”.
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