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272 B. ECKMANN

boundary yields a new 4-manifold where the element corresponding to r; has
been killed; and similarly for the other r;. Let My be the 4-manifold thus
obtained, fulfilling 7;(My) = G. The idea of that construction can already be
found in the old book [S-T]. Much later the procedure, in a more general
context, has been called “elementary surgery”.

1.2. We recall that the (good old) Euler characteristic x(X) of a finite
cell complex X is the alternating sum

XX) =D (=1 o,

where «; is the number of i-cells. It is easily computed for M, above: For
M’ it is 2 —2m since it is = 0 for S' x $* and since it decreases by 2 in
a connected sum. Under the surgery process above it increases by 2 [use the
fact that for the union of two complexes X and Y with intersection Z the
characteristic is yx(X) + x(Y) — x(Z); and that y(B? x S?) = 2]. Whence

XMy) =2—-2m+2n=2—-2(m—n).

The difference m — n is called the deficiency of the presentation of G.

1.3. On the other hand the characteristic can be expressed by the Betti
numbers of the cell complex X as > (—1)' B;(X) where 3;(X) = dimg H;(X;R)
(and is therefore a topological invariant). Moreover the (3; of a manifold
fulfill Poincaré duality, i.e. they are equal in complementary dimensions. Thus
xM) = 2-231(M)+ (3,(M). We recall that homology in dimension 1 depends
on the fundamental group G only; (; is the Q-rank of G Abelianised and
we write [(3;(G) for (;(M). Comparing with x(M,) above we see that the
deficiency of the presentation is < [3;(G). Thus there is a maximum for the
deficiency of all presentations of G, called the deficiency def(G) of G. [For
this simple side result there are, of course, much easier arguments.]

2. THE HAUSMANN-WEINBERGER INVARIANT

2.1. As seen above, the Euler characteristic of a 4-manifold M with given
finitely presented fundamental group G is bounded below by 2 — 28:(G).
The .minimum of y(M) for all such M has been considered by Hausmann-
Weinberger [H-W] and denoted by ¢q(G). Using M, above we have the
inequalities

2 -261(G) < q(G) <2 —2def(G).
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2.2. EXAMPLES.

1) In [H-W] it is shown, by a simple argument, that g(Z") > 0 for
all n > 1. We return to that case later on. Here we just recall that
g(Z) = g(Z*) = q(Z*) = 0, as is easily seen by taking an appropriate M with
x(M) = 0. However for Z> one only gets 0 < g < 2, the deficiency being O.

2) For the surface group %,, g > 2, i.e. the fundamental group of the
closed orientable surface of genus g, one has def(X;) =2¢g—1 and 0§, = 2g.
Thus

2—-4g <qZy) <4-—4g.

3) For any knot group G (the fundamental group of the complement of a
classical knot in S?) the deficiency is 1 and ; = 1 whence ¢(G) = 0.

4) Let G be a 2-knot-group, i.e. the fundamental group of the complement
of two-dimensional knot S? in S*. As for classical knots 5;(G) = 1. Surgery
along the imbedded sphere S? produces a 4-manifold M with fundamental
group G, and with 3,(M) = 0, whence xM = 0. Thus again ¢(G) = 0.

2.3. There is a topological ingredient available in 4-manifolds which has
not been used, namely the signature. This has suggested a more refined group
invariant associated with 4-manifolds, see the next section.

3. THE (x + 0)-INVARIANT

3.1. We recall that the cohomology group H?*(M;R) is a real quadratic
space, the quadratic form being given by the cup-product evaluated on the
fundamental cycle of M. It is non-degenerate, and the space splits into a
positive-definite and a negative-definite subspace of dimensions 62‘* and (3
respectively. The difference 3, — 3, = o(M) is the signature of M. Its sign
clearly depends on the orientation of M and we assume the orientation chosen
in such a way that o(M) <0, i.e., ,6; < B, . Since (B = 6; + 3, the sum
xX(M)+o(M) is equal to 2 — 2B1(G)+2/32+(M), where as always G = m;(M).
Since that sum is bounded below by 2—23,(G) depending on G only one can
define an invariant p(G) to be the minimum of x (M) + o(M) for all M with
fundamental group G and oriented in such a way that o(M) < 0. Obviously
p(G) < g(G). An equivalent way to define p(G) is to take, independently of
orientations, the minimum of x(M) — |oc(M)].

Putting together all above inequalities we get

2=201(6) < p(G) < q(G) <2 —2def(G).
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