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272 B. ECKMANN

boundary yields a new 4-manifold where the element corresponding to rx has

been killed; and similarly for the other rt. Let Mo be the 4-manifold thus

obtained, fulfilling tit (Mo) G. The idea of that construction can already be

found in the old book [S-T]. Much later the procedure, in a more general

context, has been called "elementary surgery".

1.2. We recall that the (good old) Euler characteristic %(X) of a finite
cell complex X is the alternating sum

x(x) yy-i)'a«,
where ce/ is the number of /-cells. It is easily computed for Mo above: For

M' it is 2 — 2m since it is =0 for S1 x S3 and since it decreases by 2 in
a connected sum. Under the surgery process above it increases by 2 [use the

fact that for the union of two complexes X and Y with intersection Z the

characteristic is x(X) + x(T) — x(Z); anc* that x(B2 x S2) 2]. Whence

X(Mo) 2 — 2m + 2n 2 — 2(m — n).

The difference m — n is called the deficiency of the presentation of G.

1.3. On the other hand the characteristic can be expressed by the Betti
numbers of the cell complex X as XX— IT ß-,{X) where ßi(X) — diniRH/(X;R)
(and is therefore a topological invariant). Moreover the ßt of a manifold
fulfill Poincaré duality, i.e. they are equal in complementary dimensions. Thus

X(M) 2~2ß\ (M) -1- We recall that homology in dimension 1 depends

on the fundamental group G only; ß\ is the Q-rank of G Abelianised and

we write ß\(G) for ß\(M). Comparing with x(Mo) above we see that the

deficiency of the presentation is < ß\(G). Thus there is a maximum for the

deficiency of all presentations of G, called the deficiency def(G) of G. [For
this simple side result there are, of course, much easier arguments.]

2. The Hausmann-Weinberger invariant

2.1. As seen above, the Euler characteristic of a 4-manifold M with given

finitely presented fundamental group G is bounded below by 2 - 2ß\(G).
The minimum of x(M) for all such M has been considered by Hausmann-

Weinberger [H-W] and denoted by q(G). Using Mo above we have the

inequalities
2 - 2ßi (G) < q(G) <2-2 def(G).
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2.2. Examples.

1) In [H-W] it is shown, by a simple argument, that q(Zn) > 0 for

all n > 1. We return to that case later on. Here we just recall that

q(Z) g(Z2) q(Z4) 0, as is easily seen by taking an appropriate M with

X(M) 0. However for Z3 one only gets 0 < q < 2, the deficiency being 0.

2) For the surface group g > 2, i.e. the fundamental group of the

closed orientable surface of genus g, one has def(Xg) 2g—l and ß\ =2g.
Thus

2-Ag<qÇLg)<4-4g.
3) For any knot group G (the fundamental group of the complement of a

classical knot in S3) the deficiency is 1 and ß\ — 1 whence q(G) 0.

4) Let G be a 2-knot-group, i.e. the fundamental group of the complement

of two-dimensional knot S2 in S4. As for classical knots ß\ (G) =* 1. Surgery

along the imbedded sphere S2 produces a 4-manifold M with fundamental

group G, and with ßo{M) 0, whence xM — 0. Thus again q(G) — 0.

2.3. There is a topological ingredient available in 4-manifolds which has

not been used, namely the signature. This has suggested a more refined group
invariant associated with 4-manifolds, see the next section.

3. The (x + a) -invariant

3.1. We recall that the cohomology group H2(M\ R) is a real quadratic

space, the quadratic form being given by the cup-product evaluated on the

fundamental cycle of M. It is non-degenerate, and the space splits into a

positive-definite and a negative-definite subspace of dimensions and ßß
respectively. The difference ßß — ßß a(M) is the signature of M. Its sign
clearly depends on the orientation of M and we assume the orientation chosen
in such a way that a(M) < 0, i.e., ßt < ßß • Since ß2 — ßt + ß2 the sum
X(M) + cr(M) is equal to 2 — 2/3i(G)+ 2/^(44), where as always G
Since that sum is bounded below by 2 — 2ß\(G) depending on G only one can
define an invariant p(G) to be the minimum of xiM) + cr(M) for all M with
fundamental group G and oriented in such a way that a(M) < 0. Obviously
p{G) < q(G). An equivalent way to define p{G) is to take, independently of
orientations, the minimum of x(M) — \a(M)\.

Putting together all above inequalities we get

2 - 2ß\(G) < p(G) < q(G) < 2 - 2def(G)
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