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4-MANIFOLDS, GROUP INVARIANTS, AND 1%-BETTI NUMBERS

by Beno ECKMANN

It has been known for some time that closed 4-manifolds provide, via the
fundamental group and the Euler characteristic, interesting invariants for finitely
presented groups. In this short survey we describe these and more refined invariants
(using also the signature of the manifold), and explain some of their significance. The
invariants are not easily calculated in general, but quite good information is obtained
using A-Betti numbers.

The topic has been developed by several authors, more or less independently. We
mention Hausmann-Weinberger [H-W], Kotschick [K], Lück [L], and myself [El],
[E2]. The paper [K] contains a wealth of information on the invariants and further
important references; the application of A-Betti numbers appears in [E2] and in [L].

1. A BASIC CONSTRUCTION

1.1. We will always denote by M a connected orientable closed 4-manifold
(compact without boundary) admitting a cell decomposition. The fundamental

group G wi(M) is finitely presented. Indeed, homotopy classes of loops
can be represented by edge-polygons and null-homotopies of these by using
2-cells. Conversely, any finitely presented group G is the fundamental group
of a closed 4-manifold. If

G= (giIis a presentation of G, there is a standard procedure for constructing such a
manifold : One first puts M' S1 x S3 -}h S1 x S3, connected sum, one
copy for each generator p,- of G. Then is a free group on generators
flii • • • j flm A relator, say r\,is a word in the g, and can be represented by
a loop V in M'.

A tubular neighbourhood V x B3 of V, where is the -dimensional
ball, has boundary S1 x S2.Replacingthe interior by x S2 with the same
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boundary yields a new 4-manifold where the element corresponding to rx has

been killed; and similarly for the other rt. Let Mo be the 4-manifold thus

obtained, fulfilling tit (Mo) G. The idea of that construction can already be

found in the old book [S-T]. Much later the procedure, in a more general

context, has been called "elementary surgery".

1.2. We recall that the (good old) Euler characteristic %(X) of a finite
cell complex X is the alternating sum

x(x) yy-i)'a«,
where ce/ is the number of /-cells. It is easily computed for Mo above: For

M' it is 2 — 2m since it is =0 for S1 x S3 and since it decreases by 2 in
a connected sum. Under the surgery process above it increases by 2 [use the

fact that for the union of two complexes X and Y with intersection Z the

characteristic is x(X) + x(T) — x(Z); anc* that x(B2 x S2) 2]. Whence

X(Mo) 2 — 2m + 2n 2 — 2(m — n).

The difference m — n is called the deficiency of the presentation of G.

1.3. On the other hand the characteristic can be expressed by the Betti
numbers of the cell complex X as XX— IT ß-,{X) where ßi(X) — diniRH/(X;R)
(and is therefore a topological invariant). Moreover the ßt of a manifold
fulfill Poincaré duality, i.e. they are equal in complementary dimensions. Thus

X(M) 2~2ß\ (M) -1- We recall that homology in dimension 1 depends

on the fundamental group G only; ß\ is the Q-rank of G Abelianised and

we write ß\(G) for ß\(M). Comparing with x(Mo) above we see that the

deficiency of the presentation is < ß\(G). Thus there is a maximum for the

deficiency of all presentations of G, called the deficiency def(G) of G. [For
this simple side result there are, of course, much easier arguments.]

2. The Hausmann-Weinberger invariant

2.1. As seen above, the Euler characteristic of a 4-manifold M with given

finitely presented fundamental group G is bounded below by 2 - 2ß\(G).
The minimum of x(M) for all such M has been considered by Hausmann-

Weinberger [H-W] and denoted by q(G). Using Mo above we have the

inequalities
2 - 2ßi (G) < q(G) <2-2 def(G).
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2.2. Examples.

1) In [H-W] it is shown, by a simple argument, that q(Zn) > 0 for

all n > 1. We return to that case later on. Here we just recall that

q(Z) g(Z2) q(Z4) 0, as is easily seen by taking an appropriate M with

X(M) 0. However for Z3 one only gets 0 < q < 2, the deficiency being 0.

2) For the surface group g > 2, i.e. the fundamental group of the

closed orientable surface of genus g, one has def(Xg) 2g—l and ß\ =2g.
Thus

2-Ag<qÇLg)<4-4g.
3) For any knot group G (the fundamental group of the complement of a

classical knot in S3) the deficiency is 1 and ß\ — 1 whence q(G) 0.

4) Let G be a 2-knot-group, i.e. the fundamental group of the complement

of two-dimensional knot S2 in S4. As for classical knots ß\ (G) =* 1. Surgery

along the imbedded sphere S2 produces a 4-manifold M with fundamental

group G, and with ßo{M) 0, whence xM — 0. Thus again q(G) — 0.

2.3. There is a topological ingredient available in 4-manifolds which has

not been used, namely the signature. This has suggested a more refined group
invariant associated with 4-manifolds, see the next section.

3. The (x + a) -invariant

3.1. We recall that the cohomology group H2(M\ R) is a real quadratic

space, the quadratic form being given by the cup-product evaluated on the

fundamental cycle of M. It is non-degenerate, and the space splits into a

positive-definite and a negative-definite subspace of dimensions and ßß
respectively. The difference ßß — ßß a(M) is the signature of M. Its sign
clearly depends on the orientation of M and we assume the orientation chosen
in such a way that a(M) < 0, i.e., ßt < ßß • Since ß2 — ßt + ß2 the sum
X(M) + cr(M) is equal to 2 — 2/3i(G)+ 2/^(44), where as always G
Since that sum is bounded below by 2 — 2ß\(G) depending on G only one can
define an invariant p(G) to be the minimum of xiM) + cr(M) for all M with
fundamental group G and oriented in such a way that a(M) < 0. Obviously
p{G) < q(G). An equivalent way to define p{G) is to take, independently of
orientations, the minimum of x(M) — \a(M)\.

Putting together all above inequalities we get

2 - 2ß\(G) < p(G) < q(G) < 2 - 2def(G)
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3.2. It seems difficult in general to compute the value of p(G) and q(G)y
and their group-theoretic meaning is not known. We first show how one

can proceed in special cases where information on H2(G), i.e. H2 of the

Eilenberg-MacLane space K(G, 1) is available. We then show (Section 3.3)
that it is quite interesting for applications to know that the two invariants are

non-negative. (This is clearly the case if ß\(G) < 1, in particular if G is

finite).

Any 4-manifold M with irfM) G can be imbedded in a K(G, 1) by
adding cells of dimension 2,3,... in order to kill the homotopy groups in
dimensions > 2. This yields an injective map H2(G\ R)—>H2(M\ R). If in
H2(G\ R) the cup-product happens to be trivial then H2(M\ R) contains an

isotropic subspace of dimension ß2{G). In that case /7/"(M) must be > ß2(G)
so that

p(G) > 2 — 2ß\(G) + 2/32(G).

This applies to examples in 2.2:
For the group G 7? the 3-dimensional torus is a K(G, 1) and the cup-

product in H2 is trivial. Since ß\(G) ß2{G) 3 we get p{Z3) > 2 whence

p(Z3) q(Z3) 2.

For G Eg, g > 2, the surface of genus g is a K{G11), and

ß\(G) 2g, ß2{G) 1. Thus p(G) >4-4g whence p(Lg) qÇLg) 4-4g.
So here the invariants are negative. Another such case is the free group Fm

on m > 2 generators where one easily finds p(Fm) — q(Fm) 2 — 2m.

3.3. There are several instances where the sign of the invariants yields
significant information on the 4-manifolds or the groups involved. We mention
three of them.

I) Deficiency. From the inequality in 2.1 one immediately notes that if
q(G) > 0 then def(G) < 1. We will return to this fact later on.

II) Complex surfaces. We assume that our 4-manifold M is a complex
surface (complex dimension 2). Then it is known that x + a °f M can be

expressed in different ways: We write C2 for the second Chern class c2(M)
evaluated on M, c\ for the cup-square of the first Chern class evaluated on

M. Then x(M) c2 and a(M) 1/3(c2 — 2c2) [since the signature is 1/3

of the first Pontrjagin number, which in the complex case can be expressed

by the Chern classes as above]. Thus

X(M)+ a(M) c2 + 1/3(c? - 2c2) 1/3(c? + c2).

This is 4 times the holomorphic Euler characteristic 1—^1+^2 of M by the

Riemann-Roch theorem.
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PROPOSITION 1. Let M be a complex surface, and assume that its fundamental

group G fulfills p(G) > 0. Then the holomorphic Euler characteristic

of M is > 0.

By the Kodaira-Enriques classification it follows that M cannot be ruled

over a curve of genus > 2.

Remark. The formulae above leading to the holomorphic Euler characteristic

refer to the orientation of the complex surface dictated by the complex

structure. Thus the argument is valid only if in that orientation cr(M) < 0. If
however cr(M) > 0 then p(G) > 0 implies that 2 — 2/3i(G)4-2/^wrongC^0 5 0

where ß2v,vono refers to the "wrong" orientation and is — ßf (M). Now

ß2 (M) > ßf(M) by assumption. Thus the result remains true; the holomorphic

characteristic is > 0.

Ill) Donaldson Theory. Finitely presented groups G with piß) > 0 and

ß\(G) > 4 do not qualify for the Theorems A,B, and C of Donaldson

[D] relating to non-simply connected topological manifolds. Indeed in these

theorems the signature is assumed to be negative with ßf =0, 1 or 2.

However p{G) > 0 means 2-2A(G) + 2ft+(M) > 0, i.e. ßf(M) > ßx{G)~ 1.

4. Deus ex machina: l2-cohomology

4.1. We recall in a few words the (cellular) definition of l2 -cohomology
and Z2 -Betti numbers, in the case of a 4-manifold M but things apply to any
finite cell-complex.

Some definitions : For any countable group G let l2 G be the Hilbert

space of square-integrable real functions on G, with G operating on the left,
and NG the algebra of bounded G-equivariant linear operators on l2G. A
Hilbert-G-module H is a Hilbert space with isometric left G-action which
admits an isometric G-equivariant imbedding into some l2Gm (direct sum of
m copies of l2G). The projection operator f of l2Gm with image H is given
by a matrix ifkI), fkï G NG. The "trace" ^ 1), 1) is the von Neumann
dimension dimg//; it is a real number > 0, and 0 if and only if H 0.

Let M be the universal cover of M with the cell-decomposition
corresponding to that chosen in M. The square-integrable real i-cochains of M
constitute a Hilbert space C[2)(M) with isometric G-action. It decomposes into
the direct sum of copies of /2G, i 0,... ,4. As before a/ denotes the
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number of /-cells of M ; G is the fundamental group of M acting by permutation

of the cells of M. The Cfa with the induced coboundary operators form
a Hilbert-G-module chain complex. The cohomology Hl of that complex is

easily identified with Hl(M;l2G), cohomology with local coefficients (see, e.g.

[E2]). The reduced cohomology group if (i.e. cocycles modulo the closure

of coboundaries) of that complex can be imbedded in C(2) as a G-invariant

subspace and is therefore a Hilbert-G-module. Its von Neumann dimension

dimqH (M) is the i-th /2-Betti number ßfM). It is a topological, even a

homotopy, invariant of M.

4.2. Since dime Cl(2) on and since the von Neumann dimension behaves

like a rank, the usual Euler-Poincaré argument shows that the /2-Betti numbers

compute the Euler characteristic exactly as the ordinary Betti numbers do :

x(a*) X)(-I jßm-
Moreover the ßt of a closed manifold fulfill Poincaré duality. Thus

X(M) 2ß0 — 2ßi + ~ß2

According to Atiyah's /2-signature theorem [A], a{M) can also be ex-
2 ~

pressed by appropriate /2-Betti numbers: H (M) splits into two

complementary G-invariant subspaces with von Neumann dimensions ß^{M) and

ß2 (M), and a(M) is their difference. Thus, as with ordinary Betti numbers,

one has

X(M)+ a(M) 2MG)-ß^G) + 2~ßt (M).

We now assume G to be infinite. Then ß0(G) 0. Indeed a 0-cocycle /
in M is a. constant and if M is an infinite complex / can be Z2 only if it
is 0.

THEOREM 2. Iffor a finitely presented group G the first Z2 -Betti number

ßi(G) is 0 then the invariants p(G) and q(G) are non-negative.

Corollary 3. If ßßG) 0' then def(G) < 1.

COROLLARY 4. If G 7r\ {complex surface M) with ßfiG) 0 then the

holomorphic Euler characteristic of M is non-negative.

4.3. There are many groups for which it is known that ß{(G) 0. A good

fist is given in [B-V]. We mention here three big and interesting classes of

groups with that property.
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1) All finitely generated amenable groups [C-G]. We recall that this class

includes the virtually solvable groups, thus in particular the finitely generated

Abelian groups (whence Z", example 1) in 2.2). [Actually for an amenable

group G with K{G, 1) of finite type, i.e. there is a K(G, 1) with finite

m-skeleta, all /2 -Betti numbers are 0.]

THEOREM 5. If G is a finitely presented amenable group then p(G) and

q(G) are non-negative.

2) [LI] All finitely presented groups G containing an infinite finitely
generated normal subgroup N such that there is in G/N an element of
infinite order. For these "Liick groups" one has the same conclusions as in the

amenable case. — In [LI] the subgroup N is assumed to be finitely presented.

Lück has shown later [L2] that the weaker assumption above is sufficient.

3) The statement of Theorem 5 also holds more generally for a finitely
presented group G which contains a finitely generated normal subgroup N
such that G/N is infinite and amenable [E2]. The proof is somewhat different:
It makes use not of the universal cover but of the cover belonging to N. The
amenable group G/N operates on that cover and one can use the I2 -Betti
numbers relative to G/N. — A simple example is given by a group with
finitely generated commutator subgroup and infinite Abelianisation.

4.4. Remarks.

1) We note that for finitely presented infinite amenable groups, and also
for groups as in 4.3, 3) above, the deficiency is < 1. This can also be

proved without 4-manifolds : It suffices to consider a K(G, 1) with 2-skeleton
corresponding to a presentation of G.

2) It is well-known that a group with deficiency > 2 cannot be amenable
since it contains free subgroups of rank > 2; see [B-P], where a stronger
result is proved.

3) There is a class of groups for which ßx is positive: The groups
G with infinitely many ends (i.e. with Hl(G\ZG) of infinite rank; here
one takes ordinary cohomology with local coefficients). A nice proof for
this can be found in [B-V]. Another approach is to use Stallings' structure
theorem from which it follows that these groups contain free subgroups of
rank > 2 and thus are non-amenable. For non-amenable groups the Guichardet
amenability criterion [G] tells that h\G;12G) 7/1(G;/2G). The coefficient
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map H1 (G; ZG)—>Hl(G\l2G) induced by the imbedding ZG—d2G is easily
seen to be injective. Since we have assumed Hl(G\ ZG) ^ 0 the result follows.

5. The vanishing of q{G)

5.1. Here we mention in a few words what happens when for a finitely
presented group G the invariant q(G) is 0. For the details and more comments

we refer to the paper [E2]. We thus consider a 4-manifold M with G

and x(M) 0.

Since we restrict attention to groups with ßfiG) 0 the vanishing of
X(M) implies ß2(M) 0, whence H1 (M) 0. As shown in [E2] by
a spectral sequence argument it follows that H2(M,ZG) is isomorphic to

#2(G;ZG), ordinary cohomology with local coefficients ZG. By Poincaré

duality H2(M\ ZG) H2(M\ ZG) which can be identified with H2(M\ Z). Since

M is simply connected, H2{M\ Z) is isomorphic to the second homotopy group
7T2(M) 7T2(M).

What about H2{M\ Z) It can be identified with H2(M\ZG) which, by
Poincaré duality, is Hl(M\ZG) Hl(G;ZG). This group, the "endpoint-
group" of G, is known to be either 0 or Z or of infinite rank. As mentioned

in 4.4, remark 3) the latter case is excluded by our assumption ßi(G) 0.
The case H1 (G; ZG) Z is exceptional : it means that G is virtually infinite
cyclic, and we exclude this. Then H2(M;Z) b= 0.

5.2. We now add the assumption that H2(G;ZG) 0. This is a property
shared by many groups (e.g. duality groups). Then the homology groups
Hi(M\Z) are =0 for i— 1,2,3,4 (i — 4 because M is an open manifold).
Thus all homotopy groups of M are 0, M is contractible, M is a K(G, 1),
and the group G fulfills Poincaré duality.

THEOREM 6. Let G be an infinite, finitely presented group, not virtually
infinite cyclic, fulfilling ßj(G) 0 and H2{G\ZG) ~ 0, and let M be a

manifold with fundamental group G. If the Euler characteristic x(M) 0,

then M is an Eilenberg-MacLane space for G and G is a Poincaré duality

group of dimension 4.

We recall that for knot groups and 2-knot groups q(G) 0, see examples

3) and 4) in 2.2. Theorem 6 can only be applied to 2-knot groups which are

not classical knot groups since the latter have cohomological dimension 2.
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