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268 A. SCHMITT

3.12. (3A2). Let X (Pi x Fi x P\)A(p) be the blow up of Pi x Pi x Pi
in the point p. The cup form of X is

X4 + 6x1X2X3.

3.13. (2A1A2). Consider the curve C Z(s) c Pi x Pi x Pi where

5 G H°(G( 1. 1,0)© 0(0. 0,1)) is a general section, and let X be the blow up
of Pi x Pi x Pi along C. The cup form

6x1X2X3 — 3xix^ — 3x2X4 — 2x4

of X defines a cubic surface with A1-singularities in [1 : 0 : 0 : 0] and

[0:1:0:0] and an A2 -singularity in [0:0:1:0].

3.14. (£>4 Let X := Pi x fyipi-.pi) be the blow up of Pi x P2 in the

points p\ and P2. Its cup form is described by the polynomial

3xix^ + X3 + X4

This polynomial is the equation of a cubic surface with a D4 -singularity in

[1:0:0:0].

3.15. A Non-Singular Quadric with a Transversal Plane. Manifolds with
such cup forms may be obtained as suitable Pi -bundles over surfaces. Indeed,
let 7 be a smooth surface with £>2 3. W. r. t. a suitable basis (h\.h2.h2)
of H2(Y, Z), its cup form is given by x2 -h x2 +X3. Now, let £ be a vector
bundle of rank 2 such that c\(E) — c2(E) ^ 0. Let X := P(E)^^Y and choose

(tt*/zi, tt*/z2, tt*/z3, ci(öx(l))) as a basis of H2(X. Z). Then, by [OV], Prop.

15, the cup form of X is given by

{c](E)- c2{E))x\+ x4(xj +4+4).

3.16. A Quadric Cone with a Transversal Plane. Let 7 be a simply
connected surface with b2 3 and torsion free homology. The cup form of
7 is given by a quadratic polynomial q(x\,x2,x2) defining a smooth conic.

Thus, the cup form of 7 x Pi is given by

x4^(xi,x2,x3)

4. Real Cubic Forms which are not Cup Forms of Projective
Algebraic Manifolds

In the paper [Sch2], the author investigated the restrictions on the real

cubic forms of projective manifolds imposed by the so called Hodge-Riemann
bilinear relations :
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THEOREM 8. Let X be a Kählerian threefold and h G H2(X, R) be a

Kühler class. Then the map

H2(X,R)xH2(X,R) —> R
(<2, £>) I—> a U b U h

is a non-degenerate, symmetric bilinear form of signature (2h2,0 + 1,/z1'1 — 1).

One can restate this theorem in such a form as to obtain - at least in theory

- some explicit inequalities in the coefficients of cubic polynomials which

are satisfied by the cup forms of Kählerian and hence projective algebraic
threefolds. The main result of [Sch2] is

THEOREM 9. For n > 4, the polynomial

X° 3x")

cannot occur as the (real) cup form of a projective algebraic threefold with
b\ — 0 and b>$ 0.

As a corollary, one obtains the following generalization of a result of
Campana and Peternell [CP] :

THEOREM 10. For n > 4, twistor spaces over jj"=1P2 ore not homeomor-
phic to projective algebraic threefolds.
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