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262 A. SCHMITT

PROPOSITION 4. The set of sextuples in U whose associated cubic surface
is given by an equation which is not a (nondegenerate) Sylvestrian pentahedral
form is the Zariski-closed subset {f*ho 0}.

Of course, a better understanding of the geometric meaning of the other

invariants should allow to extend this result.

II. Cubic Forms of Projective Threefolds

1. Preliminaries

For the convenience of the reader, we have collected the crucial theorems

which we will use in the construction of our examples.

1.1. The Lefschetz Theorem on Hyperplane Sections. We summarize

Bertini's Theorem and Lefschetz' Theorem in:

THEOREM 5. Let Y be a projective manifold, L a very ample line bundle

on Y, and X := Z{s) the zero-set of a general section s H°(X,L). Then X
is a manifold (connected if dim Y >2), and the inclusion u : X Y induces

isomorphisms

t* : Hl(Y, Z) —> H\X, Z), / 1,..., dim Y - 2;

l* : 7TfX) —* 7T/(F). i 1,..., dim Y - 2

Proof [La], Th. 3.6.7 & Th. 8.1.1.

1.2. Formulas for Blow Ups. A very simple way to obtain a new manifold

from a given one is the blow up in a point or along a smooth curve. The

cup form behaves as follows (we will suppose for simplicity that H2(Y, Z) is

without torsion) :

THEOREM 6. i) Let a: X —> Y be the blow up of Y in a point. Let

q(x[. be the cubic polynomial which describes the cup form of Y w. r. t.

the basis (k,\,... ,Kn) of H2(Y, Z). If ho £ H2(X, Z) is the cohomology class

of the exceptional divisor, then (/zo, • • •, cr*Kn) is a basis of H2(Y^ Z)
m r. t. which the cup form of X is given by

x30 + q(xi,...,xn)
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ii) Let C C Y be a smooth curve, and a : X —> Y be the blow up of Y along

this curve. Using the same notation as in i), the cup form of X is described

by the polynomial
n

q(xi,... ,xn) - 3 • ft/)*/*o) - degc(Nc/y)*o •

i=i

Here, C. a, stands for the evaluation of the homology class of C on Kj, and

Nc/y Is the normal bundle of C in Y.

Proof This follows easily from [GH], p.602ff.

1.3. Complete Intersections in Products of Projective Spaces.

Let P/7l x • • • xP7?;. be a product of projective spaces. Write 0{a\..... ar) for

the invertible sheaf nfö^ißi) G • • • G) 7t7T Opn/ (ar). Here, ?77 is the projection

onto the i-th factor. If all the af s are positive, this sheaf is very ample.

A section in it is given by a multihomogeneous polynomial of multidegree

(ü\ ar). We denote by

P„, I

a],the family of zero sets of sections of the sheaf

0(a\al)(£'--®0(a'ï,..., cÇ').

The members of this family are complete intersections of m hypersurfaces.

An iterated application of Theorem 5 shows that a general member X of
such a family is smooth and simply connected and that (h\,.... hm) with
ly := 7T*(ci ((2pn. 1 is a basis for H2(X. Z).

2. A Projective Threefold with a Nodal Cubic as Cup Form

We first compute
P4 I 1 2

Pi I 1 1
Let F be a smooth member of the family

the cup form of Y. Let (h^hf) be the canonical basis of H2(P4 x Pj.Z),
and {h\,hi) be the basis of H2(X. Z) as described in 1.3. We compute, e.g.,

h2Iî2 — h2h.2(h\ + hé(2hi + /o) 2/z|ho — 2

Here we have written the cup product followed by evaluation on the
fundamental class as multiplication. The cup form of Y is given by the polynomial

3x^ ~b 6X2X2
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