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262 A. SCHMITT

PROPOSITION 4. The set of sextuples in U whose associated cubic surface
is given by an equation which is not a (nondegenerate) Sylvestrian pentahedral

form is the Zariski-closed subset {f*I,o = 0}.

Of course, a better understanding of the geometric meaning of the other
invariants should allow to extend this result.

II. CuBIC FORMS OF PROJECTIVE THREEFOLDS

1. PRELIMINARIES

For the convenience of the reader, we have collected the crucial theorems
which we will use in the construction of our examples.

1.1. The Lefschetz Theorem on Hyperplane Sections. We summarize
Bertini’s Theorem and Lefschetz’ Theorem in:

THEOREM 5. Let Y be a projective manifold, L a very ample line bundle
on Y, and X := Z(s) the zero-set of a general section s € H'(X,L). Then X
is a manifold (connected if dimY > 2), and the inclusion : X — Y induces
isomorphisms

Vo H(Y,Z) — H'(X,Z), i=1,...,dimY —2;
Ly Ti(X) — mi(Y), i=1,...,dimY —2.

Proof. [La], Th. 3.6.7 & Th. 8.1.1. [

1.2. Formulas for Blow Ups. A very simple way to obtain a new manifold
from a given one is the blow up in a point or along a smooth curve. The
cup form behaves as follows (we will suppose for simplicity that H*(Y,Z) is
without torsion):

THEOREM 6. 1) Let 0: X — Y be the blow up of Y in a point. Let
g(x1,...,x,) be the cubic polynomial which describes the cup form of Y w. r. 1.
the basis (ki,...,kn) of HXY,Z). If hg € H(X,Z) is the cohomology class
of the exceptional divisor, then (hg,0*K1,...,0%K,) is a basis of H*(Y,Z)
w. 1. t. which the cup form of X is given by

x8+q(x1,...,xn).
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ii) Let C C Y be a smooth curve, and o: X — Y be the blow up of Y along
this curve. Using the same notation as in 1), the cup form of X is described
by the polynomial

g(x1,. ., %) — 3~ (Z(C : /i,-)xix%) — degC(NC/Y)xS .
i=1

Here, C.k; stands for the evaluation of the homology class of C on ki, and
Necyy is the normal bundle of C in Y.

Proof. This follows easily from [GH], p.602ff. [

1.3. Complete Intersections in Products of Projective Spaces.

Let P, x---xP, be a product of projective spaces. Write O(ay.....a,) for
the invertible sheaf ﬂf@pﬂl (a))®---@m;Op, (a,). Here, 7; is the projection
onto the i-th factor. If all the a;’s are positive, this sheaf is very ample.
A section in it is given by a multihomogeneous polynomial of multidegree

(aj.....a,). We denote by
P, | a ... a7

1 m
P, | a ... 4

the family of zero sets of sections of the sheaf
O(a%;...,a,l.)@ -8 0@, ....al).

The members of this family are complete intersections of m hypersurfaces.
An iterated application of Theorem 5 shows that a general member X of
such a family is smooth and simply connected and that (k;.....h,) with
hi = w7 (c1(Op,, (1)) is a basis for H*(X,Z).

2. A PROJECTIVE THREEFOLD WITH A NODAL CUBIC AS CUP FORM
Let Y be a smooth member of the family {gf = i ?] . We first compute

the cup form of Y. Let (El,ﬁg) be the canonical basis of H*>(P4 x P,.Z),
and (h;,h,) be the basis of H*(X.Z) as described in 1.3. We compute, e.g.,

/’l%hz = E%EQ(%] + ’1712)(2};1 + Zz) = 27”2?7’1/2 =2,

Here we have written the cup product followed by evaluation on the funda-
mental class as multiplication. The cup form of Y is given by the polynomial

3X% + 6)(%)62 :
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