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16 _ S. TABACHNIKOV

identified with the space of trajectories of the geodesic flow £. Let A be the
contact form in the space of cooriented contact elements associated with the
Hamiltonian function H (see Theorem 1.1). Then the 2-form d) descends to
C ; this is the symplectic form in question.

The family of Minkowski normals to y is a curve o C C. Let o9 C C be
the curve that consists of oriented lines through a fixed point x in the plane.

LEMMA 3.3. The w-area of the region in C between the curves o and
oo equals zero.

Proof. Denote by 7, the set of cooriented contact elements with the foot
point at x. Then 7, is a Legendrian curve. The projections of 7 and 7, along
the trajectories of & are the curves ¢ and oy. The area under consideration
is the integral of the form d\ over a film spanned by & and 7. By Stokes’

theorem, this area equals
/ A— / A=0
¥ Yo

since both curves are Legendrian.

In particular, the curves o and oy intersect at least twice. Therefore at
least two Minkowski normals to ~y pass through an arbitrary point x in the
plane. If the Minkowski metric is associated with a parametrized curve ~y(¢)
then the corresponding values of ¢ are the critical points of the function

[7(@®) — x,7'®)].

REMARK. In the Euclidean case a convex closed curve has at least 2
double normals (chords, perpendicular to the curve at both ends). This is still
true in the Minkowski setting, provided the indicatrix is centrally symmetric,
but does not seem to hold in general.

4. MINKOWSKI VERTICES AND CHEBYSHEV SYSTEMS

This section contains proofs of the 4-vertex theorem in the Minkowski
setting (different from the one in [T1]) and a generalization of Theorem O0.1.
The arguments used are, more or less, classical; recently the approach via
Sturm theory attracted new interest (see [A 1, A 4, A 5, G-M-O]).

Let J have the same meaning as in the previous section and let J(¢) be
some parameterization of this curve, 0 <t < T. Let () be a strictly convex
closed smooth curve, parametrized so that the tangent vector ~'(f) has the
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same direction as J/(¢) for all z. Denote by r(z) the Minkowski curvature
radius at point () and by k(1) = 1 /r(¢) the Minkowski curvature. Fix a
linear coordinate system in the plane, and let (v1(1),72(2)) be the coordinates
of the point (7).

LEMMA 4.1. The function k'(t) is Lp—orthogonal to the functions
{1,71(8),2(0)} on the circle R/TZ.

Proof Clearly, [| K'(dt = 0. A curve, homothetic to J(z) with the
coefficient r(¢), is second order tangent to (¢). Therefore +'(r) = r()J'(@).
One has:

T T T
/ k' (Hv(t)dt = —/ k(1) (H)dt = —/ J'(t)dt=0.
0 0 0

Thus £'(¢) is orthogonal to () and (7).
In the case of a parametrized curve () this means that the function

( [ (@), 7" ()] >’
2

[/ (@®), 7" (1]

is orthogonal to {1,~(¢),v2(¢)} which follows from the easily verified identity :

O OL ( NTo )
[V @), 7" @] (v (0),7" )]

This orthogonality holds in the case when the function [y"(¢),~"/(¢)] has
zeroes as well.

DEFINITION. A (2n + 1)-dimensional space of functions on the circle is
called a Chebyshev system if every function from this space has at most 2n
zeroes, multiplicities counted.

The functions {1,7,(f),v2(f)} constitute a Chebyshev system: zeroes of a
function a + by (t) + cy,(¢) are the intersections of the line a4+ bx + cy with
the curve <y, and < 1s strictly convex. Since Minkowski vertices of ~y are
critical points of its Minkowski curvature, the 4-vertex theorem follows from
the next result found in [Gu 1, A 4, G-M-O].

THEOREM 4.2. A function f, orthogonal to a (2n + 1)-dimensional
Chebyshev system on the circle, has at least 2n + 2 distinct zeroes.

Sketch of proof. Assume f has 2n simple roots xi,...,xp,. There exists
a function g in the Chebyshev system with zeroes at xi, ..., xy,. By definition
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of Chebyshev systems, this function has no other zeroes. Thus the constant
sign intervals of f and g coincide, and [fg # 0, a contradiction. (The
argument adapts to the general case of fewer and, possibly, multiple roots.)

Theorem 4.2, along with Lemma 3.2, implies the following stronger version
of Theorem O0.1.

THEOREM 4.3. Given a generic parametrized closed strictly‘ convex plane
curve (t), the envelope of the one-parameter family of the lines, generated
by the acceleration vectors ' (t), has at least 4 cusps.

Next, we construct the support function of the curve (7). Let O be the
origin in R?. The tangent lines to ~ at point y(f) and to J at point J(¢) are
parallel; let p(#) be the coefficient of the homothety with the center at O that
takes the latter line to the former.

DEFINITION. The periodic function p(¢) is called the support function of
the curve (7).

A curve is uniquely determined by its support function. In the Euclidean
case the support function is the signed distance from the origin to the oriented
tangent lines to -y.

Let S(t) be the parametrized figuratrix, considered as a curve in R?,
and let (Sl(t),Sz(t)) be its linear coordinates. Consider the collection of
curves obtained from J(¢) by parallel translations and dilations with positive
coefficients.

LEMMA 4.4. The support functions of these curves are the functions
{a + bS(t) + cS2(t)} where a,b,c are constants and a > 0.

Proof. Clearly, the support function of J(#) is 1. By Lemma 2.2,
[J(),8®] = 1 and [J'(1),S(@)] = 0. Thus the linear functional [ ,S(1)]
equals 1 on the tangent line to the curve J at point J(z). It follows that the
support function p(¢) of a curve ~(#) equals [fy(t), S(z‘)] . Applying the dilation
with coefficient ¢ and the parallel translation through vector v to the curve
J(t) one obtains the support function

p(t) = [aJ() +v,50)] = a+ [v,50)] .

The result follows.
The curve S(¢f) being strictly convex, the vectors S'(f) and S"(¢) are
everywhere linearly independent. Thus
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S (@) = u@®) S"(@) +v() S'@)

for some T -periodic functions u(f),v(f). Consider the linear differential
operator on the circle R/TZ :

L= (d/dt)® — u(t) (d/dt)* —v(t) d/dt.

The kernel of L consists of the functions a -+ & S1(t) + ¢ Sy(¢). It follows
from the strict convexity of S that these functions constitute a Chebyshev
system.

EXAMPLE. If the parameterization S(¢) is an affine one then the operator
L equals (d/dt)® + k(t) (d/df) where k(¢) is the affine curvature.

DEFINITION. A linear differential operator of odd degree is called discon-
jugate on the circle R/TZ if every function in its kernel is T -periodic and
this kernel is a Chebyshev system.

The operator L is disconjugate. In the Euclidean case S(¢) is the unit
circle, and L = (d/dt)® + d/dt. Disconjugate operators enjoy the following
property proved in [A4, G-M-O].

THEOREM 4.5. Let L be a disconjugate differential operator on the circle
of degree 2n+1. For every smooth function f on the circle the function L(f)
has at least 2n + 2 distinct zeroes.

Vertices of a curve ~y(f) present themselves as follows in terms of the
support function p(r).

LEMMA 4.6. A point ~(to) is a Minkowski vertex if and only if

L(p) (o) = 0.

Proof.  Let po(f) be the support function of the osculating indicatrix at
point Y(fo). Then (7*p)(t0) = (j%po)(to). If (o) is a vertex then the 3-jets
are equal: (j°p)(fo) = (j3po)(to). Since L(py) = 0, one has: L(p)(ty)) = 0.

Conversely, if L(p)(ty) = 0 then

p"(t0) = u(to) p"(t0) + v(to) p' (1),

and the function py satisfies the same equation. Since the 2-jets of p and

po at to coincide, it follows that p"’(fy) = p}’(ty) as well. Therefore the
osculating indicatrix is third order tangent to v at point Y(to).

Thus Theorem 4.5 again implies the Minkowski 4-vertex theorem.

P
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REMARK. The following result is also known (see the literature cited): if
a convex closed curve intersects a curve, homothetic to J, at 2n points then
it has at least 2n Minkowski vertices.

5. CONSERVATIVE TRANSVERSE LINE FIELDS

In this section we discuss the following problem: given a smooth strictly
convex closed plane curve 7 and a smooth transverse line field / along it,
when does a parameterization ~y(¢) exist such that the line I(¢) at point ~y(f)
is generated by the acceleration vector () for all ¢ ?

DEFINITION. A transverse line field along a closed plane curve, generated
by the acceleration vectors for some parameterization of the curve, is called
conservative.

Clearly, not every line field is conservative : consider, for example, a field
of lines that everywhere make an acute angle with the curve. Theorem 0.1
provides a necessary condition: the envelope of the lines from a conservative
line field has at least 4 cusps. Lemma 3.2 gives another one: there exist at
least 2 tangent lines to this envelope through every point in the plane.

We start with the following situation. Let M> be a contact manifold and
let v C M be a closed smooth Legendrian curve. Recall that the characteristic
line field n of a contact form A is the field Ker d\. Assume that the contact
distribution along 7 is coorientable; then it can be determined by a contact
form. Let 1 be a line field along , transverse to the contact distribution.

QUESTION. When does a contact form exist in a vicinity of .7y for which
1 is the characteristic field ?

When this is the case we call the field 1 characteristic.

Let A be some contact form near v and let v be a vector field along ~
that generates the line field n. Consider the 1-form (i, d\)/A(v) and set

~ Iy dA

8

THEOREM 5.1. The number (B(,n) does not depend on the choice of the
contact form X\ nor the vector field v. This number vanishes if and only if
the field m is characteristic.
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