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accessible. On the other hand, the results for b = 4 are scattered in the
literature of over 100 years. Hence, we have written an extensive summary
of the theory of complex quaternary cubic forms. Being interested in (Cubic
forms over Z)/GLy(Z), it is more reasonable to consider the action of
SAI:b(C) := {m € GL,(C) | det(m) = £1}. To simplify things we will consider
the action of SL,(C) instead. This is the content of Part I.

In the second part, we treat the following weakened form of our original
problem :

Which quaternary cubic forms can occur as cup forms of simply connected
projective threefolds ?

For the case b < 3, we refer the reader to [OV]. In this part, we have
collected a number of examples. We also show that there is a simply connected
projective threefold with b, =3 whose cup form defines a plane cubic with
a node, a problem which remained unsolved in [OV]. We conclude our notes
by a brief summary of the author’s results concerning the non-realizability of
certain real cubic polynomials as cup forms of projective threefolds.

ACKNOWLEDGEMENTS. The results of this paper are part of the author’s
thesis [Schl]. This thesis was written under the guidance of Prof. Ch. Okonek
whom I wish to thank for many helpful discussions during the preparation of
the thesis and this paper. The author wants to acknowledge financial support by
AGE — Algebraic Geometry in Europe — Contract Number ERB CHRXCT
940557 (BBW 93.0187).

I. QUATERNARY CUBIC FORMS

In this section, we will be concerned with the space S3(C4V) of quaternary
cubic forms on which SL4(C) acts by substitution of variables. In particular,
we will treat the following problems :

1) Find “good” representatives for the orbits in S3(C4v)

2) Describe the categorical quotient S° (C4v) /] SL4(C).

(The categorical quotient is an affine algebraic variety whose set of points
is in natural bijection with the closed orbits in S3(C*"). A good introduction
to this kind of constructions can be found in [Ne].)

b
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1. NORMAL FORMS FOR QUATERNARY CUBIC FORMS

1.1. Normal Forms for Quaternary Cubic Forms Defining Non-Singular
Cubic Surfaces. Here, the result is as follows:

THEOREM 1. Every homogeneous polynomial of degree 3 in four variables
defining a non-singular cubic surface can be brought into one of the following
canonical forms (r;,r,s,t € C*):

(%) X+ 1 + raxs 4 rax; + rs(—x; — xp — x3 — x4)°,
5
where Y £1/./ri #0 (Sylvester’s pentahedral form)
i=1

(x1) r(x? +x§ + x% + xf{) (diagonal form)
(k) 0+ +x — 3snxsxy,

where (s —1)(s>+8)#0 (non-equianharmonic form)
(*3) X% + x;’ + Xﬁ — 3x%(r2x2 + r3x3 4 14X4)

(*4) xg -} x% ~+ xi — 3x%(r1x1 + rxy + r3X3 + raxy)
(*5) 2rx‘;’ + x% + xg — 3xy(sx1x + x1%3 + txﬁ),

where st(r + s3 & 1) #0.

For a proof of this theorem, we refer the reader to Segre’s book [Se]. We
will also call a form being equivalent to a form of type (%) a Sylvestrian
pentahedral form. Such a form determines a configuration of five planes
which is called the Sylvester pentahedron. Forms being equivalent to diagonal
or non-equianharmonic forms will be called degenerate Sylvestrian pentahedral
forms.

REMARK 1. Given a cubic form f defining a non-singular cubic surface,
one is led to ask to which of the above forms f is equivalent. This problem
is related to the geometry of the Hessian surface Hy = 0 in the following
way :

If the Hessian surface is reducible, there are two possibilities: Either it
consists of four different planes or of a cone over a smooth plane cubic and a

”1
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plane. In the first case, f is equivalent to a diagonal form, and in the second
case, f is equivalent to a non-equianharmonic form.

If the Hessian surface is irreducible, we have to look at its singulari-
ties. If there are precisely ten A;-singularities, f is equivalent to a Sylves-
trian pentahedral form, and the Sylvester pentahedron is determined by
the configuration of the singular points. If there are seven singular points,
one Aj-singularity and six Ajy-singularities with k& > 2, then f is equiv-
alent to a form (x3) or (x4) depending on whether the intersection of
the Hessian surface with the tangent cone to the Aj-singularity consists
of a double line and an irreducible conic or of a double line and a re-
ducible conic. If there are four singular points on the Hessian surface, then
f can be brought into a form of type (xs). In any case, much informa-
tion on the canonical form can be read off the configuration of the sin-
gular points of Hy = 0. We refer the reader to [Se] and [Schl] for the
details.

The following results on canonical forms of quaternary cubic forms can be
easily derived from the treatment of Bruce and Wall [BW] of the classification
of singular cubic surfaces.

1.2, Normal Forms for Quaternary Cubic Forms Defining Cubic Surfaces
with Isolated Singularities. Here, the normal form of f depends on the
configuration of the singularities on the surface f = 0, and we obtain:

THEOREM 2. The table overleaf lists the normal forms for quaternary cubic
forms defining cubic surfaces with isolated singularities. The configuration of
singularities on the respective surface is noted in the first column. Here, A
etc. refer to the classification of singularities (see e.g. [AGV], 242ff). Thus,
2A\Ay means that there are two A, -singularities and one A, -singularity on
the respective surface. It is assumed throughout that | € C*.

REMARK 2. The two different forms with a D, -singularity are again
distinguished by the geometry of the Hessian surface: The Hessian surface
consists in the first case of a double plane and an irreducible quadric cone
and in the second case of a double plane and two simple planes.
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Ay (x5 — x1x3) +
+x2(x1 — (14 p)xa + p1x3) (x1 — (2 + p3)xa + pap3xs),
pi € C\ {0, 1} pairwise different
244 g (x5 — x1%3) + %2 (x1 — (1 4 p1)xz + p1x3) (%1 — paxa),
pi € C\ {0,1} not equal
3A, a3 — x1x3) + x5 (x1 — (1 + p)xa + px3), pe C\ {0, 1}
4A, Ixg (x5 — x1x3) + x5(x; — 2% + X3)
A1Az Ixa(x3 — x133) + x102 (X1 — (1 + p)xa + px3),
peC\{0,1}
2A1A, g (x5 — x163) + x5 (x1 — x2)
A2A, lm(x% — X1x3) + x%
AAs g (x5 — x1x3) + X3x3 — X135
2A1A3 lx4(x% — x1x3) + xpc%
AAy [xs(x5 — x1%3) + X%
AiAs lx4(x% — x1x3) + x?
A, [xax1x0 — x3(x% + x% + x% + p1x1x3 + paxox3),
p1,p2 € C\{-2,+2}
2A, Legxixo — x3(xF + x5 + pxix3), p € C\ {-2,+2}
3A, [xax1xp — x%
Az [xax1% +x1(x% — x%) 4 pxg(xg — x%), peC*
Ay [x4X1X) + X3x3 + X2 (x5 — x3)
As Dxsx1x0 + 5 + x2(x5 — x3)
D/, beax® + 33 + 3 + X100
DI x4x? + x5 + X3
Ds x4X2 4+ X105 + X5x3
Es x4 + X135 + 0
E6 xf +x§ +x§ —3lxixpxz, P A1
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1.3. Normal Forms for Quaternary Cubic Forms Defining Irreducible
Cubic Surfaces with Non-Isolated Singularities.

PROPOSITION 1. The canonical forms for quaternary cubic forms defining
irreducible cubic surfaces with non-isolated singularities are the following .

Canonical form The surface f =0

X3x3 + X5xy Whitney’s ruled surface
x3x3 + x1x0%4 + x% Cayley’s ruled surface
xpc% +x1x% + x% Cone over a nodal cubic
x1x3 + X ~ Cone over Neil’s parabola

REMARK 3. Cayley’s ruled surface is actually a degeneration of Whitney’s
surface. Explicit constructions of those surfaces can be found in [Hal], 330f,
for Whitney’s surface and in [Ha2], 80, for Cayley’s surface.

1.4. Normal Forms for Quaternary Cubic Forms Defining Reducible Cubic
Surfaces. Here, one obtains the following obvious result :

PROPOSITION 2. A quaternary cubic form defining a reducible cubic
surface can be brought into one of the following canonical forms :

Canonical form The surface f =0

(x1 4+ x2)(x1x2 + X3X4) Non-sing. quadric w. transversal plane
X1(x1x2 + x3%4) Non-sing. quadric w. tangent plane

X (x;“_ + X3X4) Quadric cone w. transversal plane

xz(x% + X3X4) Cone over plane conic w. transversal line
X3(x?2_ + X3X4) Cone over plane conic w. tangent

X1X2X3 Three different planes

X1x2(x1 + x2) Three different planes in a pencil

XTx) Double plane and simple plane

x‘? Triple plane
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2. THE INVARIANT THEORY OF QUATERNARY CUBIC FORMS

2.1. Stable, Semistable and Nullforms. The stable and semistable qua-
ternary cubic forms and the quaternary cubic nullforms were determined by
Hilbert [Hi] (for the definition of semistable and stable see [Ne], nullform
means non-semistable form):

THEOREM 3. 1) A quaternary cubic form f is stable (resp. semistable) if
and only if the surface {f = 0} has at most singularities of type Ay (resp. Az ).

11) A quaternary cubic form f is a nullform if and only if the surface
{f =0} has isolated singularities of type Ay (k > 3), Dy, Ds, Eg, or Es,
or if it has non-isolated singularities.

2.2. Degenerations of Orbits of Semistable Forms. First, one observes that
the semistable forms with closed orbit are precisely the forms whose associated
cubic surfaces have three A,-singularities. Applying Luna’s slice theorem, one
then computes the following table of degenerations where we characterize a
form by the configuration of singularities on the corresponding cubic surface:

As ArA, 2A1A,
N\ N\ !
24, 2A-A,
N |
3A;

The details can be found in [Schl], 58ff.

2.3. The Ring of Invariants. Proofs of the following results can be found
in the paper [Be]. We want to describe the ring A := C[S3(C*") 34O | This
is the coordinate ring of the categorical quotient S3*(C*")// SL4(C). It is the
ring of polynomial expressions in the coefficients of cubic polynomials which
are constant on all SL4(C)-orbits. In order to describe the ring A, we first
introduce the following vector space

5 = {rlx? L rzxg —}—mx% —I—mxi + rsxg ’ Zx,- = O}.

On S, there is a natural action of the alternating group s, and A C C[S]?.
This inclusion is constructed as follows: The group of automorphisms H of the
Sylvester pentrahedron naturally acts on S, and it can be shown that the natural
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morphism S/H — S3(C4v) // SL4(C) is birational. This induces the inclusion
A C C[S]”. Now, H is a finite group of order 480 obviously containing Us.
Denote by o;, i = 1,2,3,4,5, and v the i-th symmetric function and the
Vandermonde determinant in the r;. Then C[S]* = Cloy,...,05,v].

THEOREM 4. The ring of invariants A is the subring of C[S]*s generated
by the following invariant polynomials

2 . 3 — 4
18 = 0'4—40305, 116 = 05071, by = 0504,
. 6 . -8 . 18
Iy = 0509, I := 05, ligo:=057,
which satisfy a relation

I}y = P(g, 116, o, 32, L40) -

2.4. The Discriminant. Using techniques from the paper [BC], one obtains
the following

PROPOSITION 3. The discriminant of quaternary cubic forms is given by
the formula

A = (I — 64L16)* — 2" (Ishs + 8137) .

2.5. Moduli Spaces of Cubic Surfaces. Define M to be the hyper-
surface {17y — P(s, 16, o4, 132, 1450) = 0} in the weighted projective space
P(8,16,24,32,40) = P(1,2,3,4,5). Then M := M\ {A =0} is a moduli
space for non-singular cubic surfaces. On the other hand, every non-singular
cubic surface can be obtained as the blow up of P, in six points in gen-
eral position. The sextuples of points in general position form an open subset
U C S°P, of the sixth symmetric power of P,. Furthermore, there is an action
of PGL3(C) on U, and the geometric quotient N := U/ PGL3(C) does exist
[Is]. By [Is], §6, NV is a coarse moduli space for pairs (X,L) consisting of a
cubic surface X and a globally generated line bundle L which defines a blow
down X — P,. Forgetting the line bundle L provides us with a morphism
N — M, so that there is a surjection f: &/ — M. Hence, we can view the
invariants of quaternary cubic forms as regular functions on /. This relates
the geometry of the cubic surface to the set of six points. One obtains, e.g.,
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PROPOSITION 4. The set of sextuples in U whose associated cubic surface
is given by an equation which is not a (nondegenerate) Sylvestrian pentahedral

form is the Zariski-closed subset {f*I,o = 0}.

Of course, a better understanding of the geometric meaning of the other
invariants should allow to extend this result.

II. CuBIC FORMS OF PROJECTIVE THREEFOLDS

1. PRELIMINARIES

For the convenience of the reader, we have collected the crucial theorems
which we will use in the construction of our examples.

1.1. The Lefschetz Theorem on Hyperplane Sections. We summarize
Bertini’s Theorem and Lefschetz’ Theorem in:

THEOREM 5. Let Y be a projective manifold, L a very ample line bundle
on Y, and X := Z(s) the zero-set of a general section s € H'(X,L). Then X
is a manifold (connected if dimY > 2), and the inclusion : X — Y induces
isomorphisms

Vo H(Y,Z) — H'(X,Z), i=1,...,dimY —2;
Ly Ti(X) — mi(Y), i=1,...,dimY —2.

Proof. [La], Th. 3.6.7 & Th. 8.1.1. [

1.2. Formulas for Blow Ups. A very simple way to obtain a new manifold
from a given one is the blow up in a point or along a smooth curve. The
cup form behaves as follows (we will suppose for simplicity that H*(Y,Z) is
without torsion):

THEOREM 6. 1) Let 0: X — Y be the blow up of Y in a point. Let
g(x1,...,x,) be the cubic polynomial which describes the cup form of Y w. r. 1.
the basis (ki,...,kn) of HXY,Z). If hg € H(X,Z) is the cohomology class
of the exceptional divisor, then (hg,0*K1,...,0%K,) is a basis of H*(Y,Z)
w. 1. t. which the cup form of X is given by

x8+q(x1,...,xn).
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