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QUATERNARY CUBIC FORMS
AND
PROJECTIVE ALGEBRAIC THREEFOLDS

by Alexander SCHMITT

INTRODUCTION

As algebraic geometers, we are interested in a special kind of complex man-
ifolds, namely in complex submanifolds of projective spaces. A submanifold
X of P, is given as the common zero locus of a set of homogeneous poly-
nomials such that the Jacobi matrix of these polynomials has rank n — dim X
at every point of X. We call such a manifold a projective algebraic manifold.
The main goal is the classification of projective algebraic manifolds up to bi-
holomorphic equivalence. Now, a projective algebraic manifold is in particular
an oriented and closed topological manifold. Moreover, biholomorphic maps
are orientation preserving homeomorphisms.

Thus, we obtain a natural approach to the classification of projective
algebraic manifolds which can be stated for complex dimension 3 as follows:

Given a six-dimensional, closed, and oriented topological manifold X, de-
scribe all projective algebraic threefolds (up to biholomorphic equivalence)
whose underlying topological manifold is orientation preservingly homeomor-
phic to X.

B s e



254 A. SCHMITT

Of course, one does not have a general classification of the respective topo-
logical manifolds. However, if we restrict our attention to simply connected,
six-dimensional, closed, and oriented topological manifolds with torsion free
homology, there is a classification result in the sense of algebraic topology,
due to C.T.C. Wall [Wa] and P.E. Jupp [Ju]. This means the classification of
simply connected, six-dimensional, closed, and oriented topological manifolds
with torsion free homology up to orientation preserving homeomorphy can
be reduced to the classification of certain algebraic data, so called admissible
systems of invariants.

The explicit classification of these algebraic data can be carried out in the
case the second Betti number b, is 1 [OV]. But already for b, = 2, the
picture 1s rather complicated and not yet complete [Sch3]. So, it seems to be
a rather hopeless task to classify systems of invariants for b, > 2. Thus, we
restrict ourselves to the consideration of the most important part of the system
of invariants of the simply connected, six-dimensional, closed, and oriented
topological manifold X, the cup form

ox: SH*(X,7) — 7.
[a@b®c] —— (aUbUc)X].

Here, [X] is the fundamental class of X. We remark that the assumptions
we make on the manifold X imply that the whole cohomology ring of X is
determined by ¢y and the third Betti number b3(X).

We can also replace Z by R or C to obtain a weaker invariant. By our
hypothesis, H*(X,Z) is a free Z-module, and H*(X,R) = H*(X.Z) ®z R,
R = R,C. If we fix a basis for H*(X,R), we can identify ¢x with a
homogeneous cubic polynomial. On the module of all homogeneous cubic
polynomials in b variables, there 1s an action of GL,(R) by substitution of
variables. Hence, we obtain a coarse picture of the classification of simply
connected, six-dimensional, closed, and oriented topological manifolds with
b, = b if we determine the normal forms for cubic polynomials over Z in
b variables w. r. t. the action of GL,(Z) and if we describe the set of forms
wx, X being a topological manifold.

For the latter part, we remark that there i1s a simple criterion to check
whether a given cubic polynomial over Z is of the form ¢y or not (see
[Sch2], Cor. 1). For example, this criterion is fulfilled if all coefficients are
divisible by 6. The determination of normal forms is again very difficult.
However, if we work over the field of complex numbers instead, results are
known for up to b = 4 variables. The results for b < 3 variables are easily




QUATERNARY CUBIC FORMS 255

accessible. On the other hand, the results for b = 4 are scattered in the
literature of over 100 years. Hence, we have written an extensive summary
of the theory of complex quaternary cubic forms. Being interested in (Cubic
forms over Z)/GLy(Z), it is more reasonable to consider the action of
SAI:b(C) := {m € GL,(C) | det(m) = £1}. To simplify things we will consider
the action of SL,(C) instead. This is the content of Part I.

In the second part, we treat the following weakened form of our original
problem :

Which quaternary cubic forms can occur as cup forms of simply connected
projective threefolds ?

For the case b < 3, we refer the reader to [OV]. In this part, we have
collected a number of examples. We also show that there is a simply connected
projective threefold with b, =3 whose cup form defines a plane cubic with
a node, a problem which remained unsolved in [OV]. We conclude our notes
by a brief summary of the author’s results concerning the non-realizability of
certain real cubic polynomials as cup forms of projective threefolds.

ACKNOWLEDGEMENTS. The results of this paper are part of the author’s
thesis [Schl]. This thesis was written under the guidance of Prof. Ch. Okonek
whom I wish to thank for many helpful discussions during the preparation of
the thesis and this paper. The author wants to acknowledge financial support by
AGE — Algebraic Geometry in Europe — Contract Number ERB CHRXCT
940557 (BBW 93.0187).

I. QUATERNARY CUBIC FORMS

In this section, we will be concerned with the space S3(C4V) of quaternary
cubic forms on which SL4(C) acts by substitution of variables. In particular,
we will treat the following problems :

1) Find “good” representatives for the orbits in S3(C4v)

2) Describe the categorical quotient S° (C4v) /] SL4(C).

(The categorical quotient is an affine algebraic variety whose set of points
is in natural bijection with the closed orbits in S3(C*"). A good introduction
to this kind of constructions can be found in [Ne].)

b
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1. NORMAL FORMS FOR QUATERNARY CUBIC FORMS

1.1. Normal Forms for Quaternary Cubic Forms Defining Non-Singular
Cubic Surfaces. Here, the result is as follows:

THEOREM 1. Every homogeneous polynomial of degree 3 in four variables
defining a non-singular cubic surface can be brought into one of the following
canonical forms (r;,r,s,t € C*):

(%) X+ 1 + raxs 4 rax; + rs(—x; — xp — x3 — x4)°,
5
where Y £1/./ri #0 (Sylvester’s pentahedral form)
i=1

(x1) r(x? +x§ + x% + xf{) (diagonal form)
(k) 0+ +x — 3snxsxy,

where (s —1)(s>+8)#0 (non-equianharmonic form)
(*3) X% + x;’ + Xﬁ — 3x%(r2x2 + r3x3 4 14X4)

(*4) xg -} x% ~+ xi — 3x%(r1x1 + rxy + r3X3 + raxy)
(*5) 2rx‘;’ + x% + xg — 3xy(sx1x + x1%3 + txﬁ),

where st(r + s3 & 1) #0.

For a proof of this theorem, we refer the reader to Segre’s book [Se]. We
will also call a form being equivalent to a form of type (%) a Sylvestrian
pentahedral form. Such a form determines a configuration of five planes
which is called the Sylvester pentahedron. Forms being equivalent to diagonal
or non-equianharmonic forms will be called degenerate Sylvestrian pentahedral
forms.

REMARK 1. Given a cubic form f defining a non-singular cubic surface,
one is led to ask to which of the above forms f is equivalent. This problem
is related to the geometry of the Hessian surface Hy = 0 in the following
way :

If the Hessian surface is reducible, there are two possibilities: Either it
consists of four different planes or of a cone over a smooth plane cubic and a

”1
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plane. In the first case, f is equivalent to a diagonal form, and in the second
case, f is equivalent to a non-equianharmonic form.

If the Hessian surface is irreducible, we have to look at its singulari-
ties. If there are precisely ten A;-singularities, f is equivalent to a Sylves-
trian pentahedral form, and the Sylvester pentahedron is determined by
the configuration of the singular points. If there are seven singular points,
one Aj-singularity and six Ajy-singularities with k& > 2, then f is equiv-
alent to a form (x3) or (x4) depending on whether the intersection of
the Hessian surface with the tangent cone to the Aj-singularity consists
of a double line and an irreducible conic or of a double line and a re-
ducible conic. If there are four singular points on the Hessian surface, then
f can be brought into a form of type (xs). In any case, much informa-
tion on the canonical form can be read off the configuration of the sin-
gular points of Hy = 0. We refer the reader to [Se] and [Schl] for the
details.

The following results on canonical forms of quaternary cubic forms can be
easily derived from the treatment of Bruce and Wall [BW] of the classification
of singular cubic surfaces.

1.2, Normal Forms for Quaternary Cubic Forms Defining Cubic Surfaces
with Isolated Singularities. Here, the normal form of f depends on the
configuration of the singularities on the surface f = 0, and we obtain:

THEOREM 2. The table overleaf lists the normal forms for quaternary cubic
forms defining cubic surfaces with isolated singularities. The configuration of
singularities on the respective surface is noted in the first column. Here, A
etc. refer to the classification of singularities (see e.g. [AGV], 242ff). Thus,
2A\Ay means that there are two A, -singularities and one A, -singularity on
the respective surface. It is assumed throughout that | € C*.

REMARK 2. The two different forms with a D, -singularity are again
distinguished by the geometry of the Hessian surface: The Hessian surface
consists in the first case of a double plane and an irreducible quadric cone
and in the second case of a double plane and two simple planes.
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Ay (x5 — x1x3) +
+x2(x1 — (14 p)xa + p1x3) (x1 — (2 + p3)xa + pap3xs),
pi € C\ {0, 1} pairwise different
244 g (x5 — x1%3) + %2 (x1 — (1 4 p1)xz + p1x3) (%1 — paxa),
pi € C\ {0,1} not equal
3A, a3 — x1x3) + x5 (x1 — (1 + p)xa + px3), pe C\ {0, 1}
4A, Ixg (x5 — x1x3) + x5(x; — 2% + X3)
A1Az Ixa(x3 — x133) + x102 (X1 — (1 + p)xa + px3),
peC\{0,1}
2A1A, g (x5 — x163) + x5 (x1 — x2)
A2A, lm(x% — X1x3) + x%
AAs g (x5 — x1x3) + X3x3 — X135
2A1A3 lx4(x% — x1x3) + xpc%
AAy [xs(x5 — x1%3) + X%
AiAs lx4(x% — x1x3) + x?
A, [xax1x0 — x3(x% + x% + x% + p1x1x3 + paxox3),
p1,p2 € C\{-2,+2}
2A, Legxixo — x3(xF + x5 + pxix3), p € C\ {-2,+2}
3A, [xax1xp — x%
Az [xax1% +x1(x% — x%) 4 pxg(xg — x%), peC*
Ay [x4X1X) + X3x3 + X2 (x5 — x3)
As Dxsx1x0 + 5 + x2(x5 — x3)
D/, beax® + 33 + 3 + X100
DI x4x? + x5 + X3
Ds x4X2 4+ X105 + X5x3
Es x4 + X135 + 0
E6 xf +x§ +x§ —3lxixpxz, P A1
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1.3. Normal Forms for Quaternary Cubic Forms Defining Irreducible
Cubic Surfaces with Non-Isolated Singularities.

PROPOSITION 1. The canonical forms for quaternary cubic forms defining
irreducible cubic surfaces with non-isolated singularities are the following .

Canonical form The surface f =0

X3x3 + X5xy Whitney’s ruled surface
x3x3 + x1x0%4 + x% Cayley’s ruled surface
xpc% +x1x% + x% Cone over a nodal cubic
x1x3 + X ~ Cone over Neil’s parabola

REMARK 3. Cayley’s ruled surface is actually a degeneration of Whitney’s
surface. Explicit constructions of those surfaces can be found in [Hal], 330f,
for Whitney’s surface and in [Ha2], 80, for Cayley’s surface.

1.4. Normal Forms for Quaternary Cubic Forms Defining Reducible Cubic
Surfaces. Here, one obtains the following obvious result :

PROPOSITION 2. A quaternary cubic form defining a reducible cubic
surface can be brought into one of the following canonical forms :

Canonical form The surface f =0

(x1 4+ x2)(x1x2 + X3X4) Non-sing. quadric w. transversal plane
X1(x1x2 + x3%4) Non-sing. quadric w. tangent plane

X (x;“_ + X3X4) Quadric cone w. transversal plane

xz(x% + X3X4) Cone over plane conic w. transversal line
X3(x?2_ + X3X4) Cone over plane conic w. tangent

X1X2X3 Three different planes

X1x2(x1 + x2) Three different planes in a pencil

XTx) Double plane and simple plane

x‘? Triple plane
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2. THE INVARIANT THEORY OF QUATERNARY CUBIC FORMS

2.1. Stable, Semistable and Nullforms. The stable and semistable qua-
ternary cubic forms and the quaternary cubic nullforms were determined by
Hilbert [Hi] (for the definition of semistable and stable see [Ne], nullform
means non-semistable form):

THEOREM 3. 1) A quaternary cubic form f is stable (resp. semistable) if
and only if the surface {f = 0} has at most singularities of type Ay (resp. Az ).

11) A quaternary cubic form f is a nullform if and only if the surface
{f =0} has isolated singularities of type Ay (k > 3), Dy, Ds, Eg, or Es,
or if it has non-isolated singularities.

2.2. Degenerations of Orbits of Semistable Forms. First, one observes that
the semistable forms with closed orbit are precisely the forms whose associated
cubic surfaces have three A,-singularities. Applying Luna’s slice theorem, one
then computes the following table of degenerations where we characterize a
form by the configuration of singularities on the corresponding cubic surface:

As ArA, 2A1A,
N\ N\ !
24, 2A-A,
N |
3A;

The details can be found in [Schl], 58ff.

2.3. The Ring of Invariants. Proofs of the following results can be found
in the paper [Be]. We want to describe the ring A := C[S3(C*") 34O | This
is the coordinate ring of the categorical quotient S3*(C*")// SL4(C). It is the
ring of polynomial expressions in the coefficients of cubic polynomials which
are constant on all SL4(C)-orbits. In order to describe the ring A, we first
introduce the following vector space

5 = {rlx? L rzxg —}—mx% —I—mxi + rsxg ’ Zx,- = O}.

On S, there is a natural action of the alternating group s, and A C C[S]?.
This inclusion is constructed as follows: The group of automorphisms H of the
Sylvester pentrahedron naturally acts on S, and it can be shown that the natural
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morphism S/H — S3(C4v) // SL4(C) is birational. This induces the inclusion
A C C[S]”. Now, H is a finite group of order 480 obviously containing Us.
Denote by o;, i = 1,2,3,4,5, and v the i-th symmetric function and the
Vandermonde determinant in the r;. Then C[S]* = Cloy,...,05,v].

THEOREM 4. The ring of invariants A is the subring of C[S]*s generated
by the following invariant polynomials

2 . 3 — 4
18 = 0'4—40305, 116 = 05071, by = 0504,
. 6 . -8 . 18
Iy = 0509, I := 05, ligo:=057,
which satisfy a relation

I}y = P(g, 116, o, 32, L40) -

2.4. The Discriminant. Using techniques from the paper [BC], one obtains
the following

PROPOSITION 3. The discriminant of quaternary cubic forms is given by
the formula

A = (I — 64L16)* — 2" (Ishs + 8137) .

2.5. Moduli Spaces of Cubic Surfaces. Define M to be the hyper-
surface {17y — P(s, 16, o4, 132, 1450) = 0} in the weighted projective space
P(8,16,24,32,40) = P(1,2,3,4,5). Then M := M\ {A =0} is a moduli
space for non-singular cubic surfaces. On the other hand, every non-singular
cubic surface can be obtained as the blow up of P, in six points in gen-
eral position. The sextuples of points in general position form an open subset
U C S°P, of the sixth symmetric power of P,. Furthermore, there is an action
of PGL3(C) on U, and the geometric quotient N := U/ PGL3(C) does exist
[Is]. By [Is], §6, NV is a coarse moduli space for pairs (X,L) consisting of a
cubic surface X and a globally generated line bundle L which defines a blow
down X — P,. Forgetting the line bundle L provides us with a morphism
N — M, so that there is a surjection f: &/ — M. Hence, we can view the
invariants of quaternary cubic forms as regular functions on /. This relates
the geometry of the cubic surface to the set of six points. One obtains, e.g.,
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PROPOSITION 4. The set of sextuples in U whose associated cubic surface
is given by an equation which is not a (nondegenerate) Sylvestrian pentahedral

form is the Zariski-closed subset {f*I,o = 0}.

Of course, a better understanding of the geometric meaning of the other
invariants should allow to extend this result.

II. CuBIC FORMS OF PROJECTIVE THREEFOLDS

1. PRELIMINARIES

For the convenience of the reader, we have collected the crucial theorems
which we will use in the construction of our examples.

1.1. The Lefschetz Theorem on Hyperplane Sections. We summarize
Bertini’s Theorem and Lefschetz’ Theorem in:

THEOREM 5. Let Y be a projective manifold, L a very ample line bundle
on Y, and X := Z(s) the zero-set of a general section s € H'(X,L). Then X
is a manifold (connected if dimY > 2), and the inclusion : X — Y induces
isomorphisms

Vo H(Y,Z) — H'(X,Z), i=1,...,dimY —2;
Ly Ti(X) — mi(Y), i=1,...,dimY —2.

Proof. [La], Th. 3.6.7 & Th. 8.1.1. [

1.2. Formulas for Blow Ups. A very simple way to obtain a new manifold
from a given one is the blow up in a point or along a smooth curve. The
cup form behaves as follows (we will suppose for simplicity that H*(Y,Z) is
without torsion):

THEOREM 6. 1) Let 0: X — Y be the blow up of Y in a point. Let
g(x1,...,x,) be the cubic polynomial which describes the cup form of Y w. r. 1.
the basis (ki,...,kn) of HXY,Z). If hg € H(X,Z) is the cohomology class
of the exceptional divisor, then (hg,0*K1,...,0%K,) is a basis of H*(Y,Z)
w. 1. t. which the cup form of X is given by

x8+q(x1,...,xn).
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ii) Let C C Y be a smooth curve, and o: X — Y be the blow up of Y along
this curve. Using the same notation as in 1), the cup form of X is described
by the polynomial

g(x1,. ., %) — 3~ (Z(C : /i,-)xix%) — degC(NC/Y)xS .
i=1

Here, C.k; stands for the evaluation of the homology class of C on ki, and
Necyy is the normal bundle of C in Y.

Proof. This follows easily from [GH], p.602ff. [

1.3. Complete Intersections in Products of Projective Spaces.

Let P, x---xP, be a product of projective spaces. Write O(ay.....a,) for
the invertible sheaf ﬂf@pﬂl (a))®---@m;Op, (a,). Here, 7; is the projection
onto the i-th factor. If all the a;’s are positive, this sheaf is very ample.
A section in it is given by a multihomogeneous polynomial of multidegree

(aj.....a,). We denote by
P, | a ... a7

1 m
P, | a ... 4

the family of zero sets of sections of the sheaf
O(a%;...,a,l.)@ -8 0@, ....al).

The members of this family are complete intersections of m hypersurfaces.
An iterated application of Theorem 5 shows that a general member X of
such a family is smooth and simply connected and that (k;.....h,) with
hi = w7 (c1(Op,, (1)) is a basis for H*(X,Z).

2. A PROJECTIVE THREEFOLD WITH A NODAL CUBIC AS CUP FORM
Let Y be a smooth member of the family {gf = i ?] . We first compute

the cup form of Y. Let (El,ﬁg) be the canonical basis of H*>(P4 x P,.Z),
and (h;,h,) be the basis of H*(X.Z) as described in 1.3. We compute, e.g.,

/’l%hz = E%EQ(%] + ’1712)(2};1 + Zz) = 27”2?7’1/2 =2,

Here we have written the cup product followed by evaluation on the funda-
mental class as multiplication. The cup form of Y is given by the polynomial

3X% + 6)(%)62 :
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Y contains four smooth curves C; = P;, i=1,...,4, such that C;.h =0,
Ci.hp =1, and N¢,/x = Op,(—1) @ Op,(—1). To see this, observe that ¥ is
defined by two equations ly-xo+[;-x; = 0 and gg-x0+¢g1-x; = 0. Here, xp and
x; are the homogeneous coordinates of P; and [y, /; and gg,q; are linear and
quadratic homogeneous polynomials in 5 variables (the homogeneous coordi-
nates of Py). It is easily computed that the image of Y under the projection
to P, is the hypersurface Y := {log1 — l1go = 0}. For a generic choice of
lo, 11, q0,q1, the set S := Z(ly, [, 40, q1) consists of 4 points (Thm 5). It is
obvious that the projection ¥ — Y is an isomorphism above Y \ S and that
the fibre above a point in S is of the type {s} x P;. The description of the
normal bundle is a consequence of this. Let X be the blow up of ¥ in one of
these curves. By Theorem 6, the cup form of X is given by the polynomial

3x7 + 6x7xy — 3xhxy + 23 .

This defines an irreducible plane cubic with a node.

3. QUATERNARY CUBIC FORMS THAT ARE CUP FORMS OF PROJECTIVE
ALGEBRAIC MANIFOLDS

On the one hand, we know by [OV], Prop. 16, that cubic forms whose
Hessian vanishes identically cannot occur as cup forms of projective threefolds.
The Hessian of a quaternary cubic form f vanishes identically if and only if
the surface f = 0 is a cone over a plane cubic curve. On the other hand, we
have collected a number of families in which we find cup forms of simply
connected projective threefolds. There are some families which are not covered
by these two results, for them the problem of realizability remains unsolved.

THEOREM 7. There are polynomials occurring as cup forms of projective
algebraic manifolds in the following families of non-singular forms:

(*)J (*1)7 (*2)7 (*4) and (*5)7

and in the following families of forms defining surfaces with isolated singu-
larities :

(A, (24)), (A1), (4A1), (2A142), (A2), (242), (3A2) and (D).

Furthermore, forms which define in P3 the union of a non-singular quadric
with a transversal plane, or the union of a quadric cone with a transversal
plane can be realized as cup forms of projective algebraic manifolds.
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We prove this result by giving examples. The cup form of a complete
intersection in a product of projective spaces is easily computed as in Section 2.
Furthermore, we will mainly use blow up constructions, hence one has to use
the formulas of Theorem 6. In some cases, we will give further details.

3.1. Sylvestrian Pentahedral Forms. Consider in Pp X P, x P, x Py a
P, 11111

; P, 11111 :
smooth member X of the family Pf = i1111 |- The cup form of X 1s
P 11111

described by the following polynomial .

90x2x3 + 90x7x3 + 90x%x4 + 90x1x3 -+ 90x;x3 + 90x1x;
+ 9Ox%x3 + 90)(%)64 + 90x2x% + 9Ox2xi + 90x%x4 + 90)(3)6421
+ 360x1x3x3 + 360x;x2x4 + 360x1x3x4 + 360x2x3X4
= 300 4 x3 + x4)° — 300x; 4+ x3 + x4)> — 30(x; + 22 + x4)°
— 3001 +x +x3)° +90(x; +x2 + x3 + x4)° .

3.2. Diagonal Forms. Let X = 133(p1,p2,p3) be the blow up of P3 in
three points. By Theorem 6, the cup form of X is then given by

3 3 3 3
X]+x+x3+x;.

3.3. Non-Equianharmonic Forms. We begin by constructing a manifold Y
with b, = 3 whose cup form is a non-equianharmonic ternary cubic form. X
will then be defined as the blow up of Y in one point. Suppose Z C P, x P,

gj { ” ., and C = Z(s) is the zero

locus of a general section s € H%(Z, O2(1,0)® Oz(1,1)). Let Y be the blow
up of Z along the curve C. In order to apply Theorem 6, we will have to
compute the intersections C.h;, i = 1,2, where (h, hy) is the canonical basis
of H*(Z,Z). To do this, we observe that the cohomology class associated to
C is just hy U (hy + hy). Thus, for example,

is a smooth member of the linear system [

hy.C=(hyUhi U +m)[X]=h +hh =hh =1.
We also have to compute deg-(N¢/z). This number is given by
(hy 4+ h) Uhy U (hy + ho))[Z] = 3hThy + hih3 = 4.
The cup form of Y is given by

: 2 2
f = 3x1x + 3x1%5 — 3x1x5 — 62203 — 4x3 .
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This describes a smooth plane cubic, and we must show that its j-invariant
does not vanish. For this, it suffices to verify that the Aronhold S-invariant is
non-zero [St, p.173]. The invariant S takes the value 3 on f [St, Prop. 4.4.7].

3.4. Non-Singular Forms whose Hessians have Seven Singular Points. We

gj I ” .Let C; = Z(s;) and C, =

Z(s,) be two disjoint smooth curves where s;, 50 € HO(Y, Oy(1,0) & Oy(1, 1))
are chosen generically. The blow up X of Y along those curves has the
following cup form:

look at a smooth member Y of the family [

3x2xy + 3x105 — 3x1X5 — 6x0x3 — 4x3 — 3x1x5 — 6xox7 — 4

This polynomial can be written as:

— %x? — %(xl + 2xy + 4x3)° — %(xl + 2xy + 4xy)’

+ 30 + 2X2)2(%X1 - 11—2()61 + 2X2)+1—16‘()C1 + 2x2 + 4x3)+ 11—6()61 + 2x, + 4)64))- ’

3.5. Non-Singular Forms whose Hessians have Four Singular Points. Let
P, |1
P, | 1

curves C; = Z(s;) and C, = Z(s,), where 51,5, € HO(Y, Oy(1,0) & Oy(0, 1))
are general sections. The blow up X of Y along those two curves has the
polynomial

Y be again a smooth member of [ ] and choose two disjoint smooth

3x%xy + 3x15 — 3155 — 3x0x5 —~ 223 — 3x1x5 — 3x0x2 — 2x;

as the cup form, and one checks that its Hessian defines a surface with
singularities in the points [1 : —=1:0:0], [0:0:0:1], [0:0:1:0], and
[0:0:—1:1]. '

P, |21
4 | . As we have
P11

seen before, Y contains four curves of the type {p} x P; with normal bundle
O(—1) ® O(—1). Define X as the blow up of ¥ along two of those curves.
The cup form of X is then described by the polynomial

3.6. (A;). Suppose Y is a smooth member of {

3x7 4+ 6x7x) — 3x0x3 — 3x0x5 + 243 + 2,

which defines a surface in P3; with an A;-singularity in [0:1:0:0].
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3.7. (24;). Let X be a smooth member of . Its cup form is
9xx3 + Ox1x] + 9x2X3 + 9x,x7 + 18x3x4 + 18x3x]
+ 18x1x0x3 + 18x1x0x4 + 36x1Xx3X4 + 36x2X3%4 .

The surface in P; defined by this polynomial has two Aj;-singularities in
[1:0:0:0] and [0:1:0:0].

3.8. (34)). Blow up P; x P, x P, in C = Z(s), where s € H'(O(1.1.0)®
©(0.1.1)) is a generically chosen section in order to obtain a manifold X
with cup form

2 2 % 3
6x1x0x3 — 3x1x; — 3x0x3 — 3x3x5 — 4y .
The corresponding cubic surface has three A;-singularities in the points

[1:0:0:0], [0:1:0:0],and [0:0:1:0].

39. (44)). Let V C P; x P, x P; x P; be a smooth divisor in
|O(ay.ar.as.ay)|, a; > 0, i = 1.2.3.4. The cup form of this manifold
is described by the polynomial

Oc1x2Xx3X4 + Oarx 1 x3x4 + 6azxixoxy + 6aAsX1X2X3 .
which defines a surface in P; with A,-singularities in [1 : 0 : 0 : 0],

0:1:0:0], [0:0:1:0],and [0:0:0:1].

3.10. (A»). Let Y be a smooth complete intersection in the family
[IP;? } ? i} . This time, blow up Y along a curve of the type {p} x P; and in
a point. The resulting manifold X has the cup form

~ 2] 3 ~
3x1 4+ 6x7x2 — 3xx3 + 2x3 + r} :

This polynomial defines a cubic surface with an A, -singularity in [0:1:0: 0].

3.11. (2A,). Let Y be a projective algebraic threefold with b, = 3 and cup
form ¢(x;.x>.x3) and suppose that ¢ defines a smooth conic with a transversal

line (this happens, e.g., when Y is a P;-bundle over some surface). The cup
form of Y blown up in one point is then

q(x). X2 x3) + x5 .
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3.12. (3A;). Let X = (P; x Py x P))(p) be the blow up of P; x Py x P,
in the point p. The cup form of X is

xf{ + 6x1x0x3 .

3.13. (2A1A,). Consider the curve C = Z(s) C P; x Py x P; where
s € HY(O(1,1,0)02 0(0,0.1)) is a general section, and let X be the blow up
of P; x P, xP; along C. The cup form

’) i
6x1x2x3 — 3x15 — 3x0%35 — 23

of X defines a cubic surface with A)-singularities in [1 : 0 : 0 : 0] and
[0:1:0:0] and an Aj-singularity in [0:0:1:0].

3.14. (D). Let X :=P; x Py(p1.p») be the blow up of Py x P, in the
points p; and p,. Its cup form is described by the polynomial

3x15 + X3 + X5 -
This polynomial is the equation of a cubic surface with a Dy-singularity in
[1:0:0:0].

3.15. A Non-Singular Quadric with a Transversal Plane. Manifolds with
such cup forms may be obtained as suitable P;-bundles over surfaces. Indeed,
let Y be a smooth surface with b, = 3. W. r. t. a suitable basis (hy, &y, h3)
of H*(Y.Z), its cup form is given by x7 + x5 + x3. Now, let E be a vector
bundle of rank 2 such that c%(E)—cz(E) £ 0. Let X := P(E)~=Y and choose
(7*hy, 7wy, T h3. ¢1(Ox(1))) as a basis of H*(X.Z). Then, by [OV], Prop.
15, the cup form of X is given by

(CH(E) — co(E))x; + x4(x + x5 +x3).

3.16. A Quadric Cone with a Transversal Plane. Let Y be a simply
connected surface with b, = 3 and torsion free homology. The cup form of
Y is given by a quadratic polynomial ¢(x.x;.x3) defining a smooth conic.
Thus, the cup form of ¥ x P; 1s given by

X4 q(X1,%2.X3) .

4. REeaL CuBIiC FORMS WHICH ARE NOT CurP FORMS OF PROJECTIVE
- ALGEBRAIC MANIFOLDS

In the paper [Sch2], the author investigated the restrictions on the real
cubic forms of projective manifolds imposed by the so called Hodge-Riemann
bilinear relations :
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THEOREM 8. Let X be a Kihlerian threefold and h € H*(X,R) be a
Kdihler class. Then the map

(.,.): H*X,R)x H*X,R) — R
(a,b) — aUbUh

is a non-degenerate, symmetric bilinear form of signature (2h*°+1, bt —1).
One can restate this theorem in such a form as to obtain — at least in theory
— some explicit inequalities in the coefficients of cubic polynomials which

are satisfied by the cup forms of Kéhlerian and hence projective algebraic
threefolds. The main result of [Sch2] is

THEOREM 9. For n > 4, the polynomial

4 —
x0< 4nx(2)—3x%—---—3x,21)

cannot occur as the (real) cup form of a projective algebraic threefold with
by =0 and b; = 0.

As a corollary, one obtains the following generalization of a result of
Campana and Peternell [CP]:

THEOREM 10. For n > 4, twistor spaces over ' P, are not homeomor-
phic to projective algebraic threefolds.
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