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Important work of Gabai and Kazez [5], [6] which uses three-dimensional
topology shows that, if o, r: Gy — Gy are nonzero-degree homomorphisms
between infinite surface groups, they are strongly equivalent if and only if
Glar) = G(a), a1(Gy) = an(Gy) and ay(G) = aa(GT). They also show
that, if a1, an: G; — G, are homomorphisms between surface groups at least
one of which is finite, then o, o, are strongly equivalent if and only if
G(ay) = Glan), ay(G)) = ax(Gy) and ai(G) = xa(GY).

5. A WORKED EXAMPLE

In this section we will apply the algorithm to a rather trivial example to
illustrate the algebraic manipulations involved.

Consider the homomorphism «: {(a,b,c,d | (a,b)(c,d)) — {(x,y | (x,y))
induced by the homomorphism of free groups A: (a,b,c,d| ) — (x,y| )
determined by (a,b.c.d) — (x,y,x,y"1).

We have

Al(a, b)(c.d)) = (x, ). y™") = (o, )y, ) Iy T

1

1—_\'_1_\ X

= (%, )

Since « is orientation-true, Kneser’s Theorem 4.8 implies that G(a) is obtained
by applying the orientation map to 1 —x~!'y~!x, so G(a) = 0. Thus we want
to apply the algorithm to transform A into a map A’ inducing «, such that
A'((a,b)(c,d)) = 1.

Form the CW-surfaces associated with the given surface group presenta-
tions, so the free group generators can be viewed as loops.

Let us subdivide y into two edges, one again called y, and the other called
z. We will call the vertices u# and v, so that x is a loop at v, y joins v to
u, and z joins u to v. The algorithm requires us to subdivide x, but, in order
to keep the example simple, we shall not do this. Now we subdivide » and d
into two edges labelled y1, z1, and y2, 72 respectively. Here the first letter
indicates the image label, while, since we plan to depict the moves in planar
diagrams, we also want a label to identify equal edges, and it is convenient
to use integers for this identification. Similarly, we label ¢ and 4 as x1 and
X2, respectively.

We first use Construction 2.9 to get a cellular map, and hence a diagram,
and then, after some simple applications of Construction 3.5 and 3.11, we
can obtain the first diagram in Figure 5.1. Now we can apply the two-step
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FIGURE 5.1

A worked example

Construction 3.18, to pass from the first to the second, and the second to the
third diagram. Thus the first and third diagrams are obtained from the second,
by first collapsing v1 and v2, respectively, and then identifying z2 = z4, and
y2 = y3, respectively. The fourth diagram is a convenient redrawing of the
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third diagram. Now we apply Construction 3.16 (a) to identify z1 = z2 and
73 = 74, and arrive at the sixth diagram in Figure 5.1.

Now we can apply Construction 3.24 to arrive at the seventh diagram in
Figure 5.1, where we have three punctured spheres, as depicted in Figure 5.2,
and we see that vl, v2 are non-separating non-trivial V-loops, and cutting
along these leaves a sphere with four punctures, which can be opened up into
a disc by cutting along x1, yl, and z1. Thus we can rearrange the seventh
diagram in Figure 5.1 to obtain the eighth diagram.

AN (O /-

zl yl z1l v3 z1

9\

FIGURE 5.2

A normal form

To see what this says about our original group homomorphism, we express:
all the steps algebraically, by manipulating groupoid presentations.

Here X, has only one face, and we have to choose a maximal subtree, and it
is natural to choose {u, v, z}. Let us express this by writing (x,y;z | (x,y2)),
where the edges after the semicolon specify (the edge set of) a maximal
subtree among the boundary edges. Recall that for CW-surface fundamental
groupoid presentations we do not specify vertices, since they correspond to
face-adjacency cycles.

In the same spirit, we express the first diagram in Figure 5.1 as

<x1,y1,x2,y2;zl,z2;v1,y3,23
x1z1ylxlylz3, 23 z1vl, vly3)y2, y3x2y272x272)

where the edges after the second semicolon specify the edges to be erased
to form a single face, and overlines indicate inverses. Here we can identify
a=xl, b=ylzl, c=x2, d = 22y2.

Now we introduce a new vertex, two new edges v2, z4, and a new face
74 = z2v2, so the second diagram is expressed as

(x1,y1,x2,y2;71,22,v2;v1,y3,23, 74
x1z1 ylxlylz3, z_3zlv2ful,ﬁy3y—2, 740272, )z—3ﬁy2z2x22—4> ,
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and here x2 is an arc, and we identify a = x1, b = ylzl, ¢ = x2v2,
d = 72y2. (We can recover the first diagram by collapsing v2 in the maximal
subtree, and cashing in the new face relation to identify z4 = z2.)

We now collapse the edge vl in the maximal subtree, and cash in the
face relation (v1)y2 = y3, to identify the two eges y2 = y3. This obliges us
to choose new edges to erase, and we find that the fourth, and third, diagrams
are expressed as

(x1,y1,x2,¥2;71,722; 723, 74, v2
x1z1 ylxlylz3, z3 z1v2, 7402 22, ﬁﬁy2z2x2z_4> ,

and here we identify a = x1, b = ylzl, ¢ = x2v2 = 22y2x2y272, d = 722.
We now re-triangulate, and the fifth diagram can be expressed as

<x1, yvl,x2,v2;z1,22; 23,74, ul
| X121 ylx1y1z3, 23 ul z4,ulz122, y2 x2y272x274)

and here we identify a = x1, b = ylzl, ¢ = 22y2x2y222, d = 72)2.

We now collapse the edge ul, and make identifications using the face
relations z2 = (ul)z1, z4 = (u1)z3, and the sixth diagram can be expressed
as <xl,yl,x2,y2;z1;z3 l ﬁz_ly—lxlylz3,y_2x—2y2z1x2z—3>, and here we identify
a=x1, b=ylzl, c =z1y2x2y2z1, d = z1y2.

We now retriangulate, to express relations which map to relations in the
free group.

Notice that we have now lifted a to the homomorphism

A {a,bye,d| ) — (x,y] )

determined by (a,b,c,d) — (x,y,¥xy,y), and A'((a,b)(c,d)) = 1.

Moreover, by changing presentations, we can now express « in a
more natural form. We take the non-separating v-loops vl = yly2 and
v2 = x1y1y2x2, and get the presentation

<x1,y1, vl,v2;71 | x1z1, ﬁvZﬂylzlﬁxlvw :

and here we identify x2 = v2xlvl, y2 = vlyl, so a = x1, b = ylzl,
¢ =71 y2x2y2z1 = z1 ylvlo2xlylzl, d = z1y2 = z1 ylvl.

Now we can collapse the maximal subtrees, and we have a description of
our group homomorphism as follows. We have the genus two surface group
(x1,y1,v1,v2 | x1ylv2vlylu2xlvl), we first impose relations annihilating
the two generators v1, v2, to get a free group, and we then impose a relation
to get the genus one surface group. Here we can identify a = x1, b = yl,
¢ = ylvlv2xlyl, d = ylvl, and thus bd = v1, abcd = v2. This represents
« in one of the normal forms described in Case 4.2.
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