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The following is an interesting illustration of Theorem 3.31.

3.33. EXAMPLE: SELF-MAPS OF THE REAL PROJECTIVE PLANE. By con-
sidering the Puppe exact sequence [12, p. 238], [13, p. 3] associated to a
map S' — S' of degree 2, one finds that each pointed homotopy class of
maps from a real projective plane to a real projective plane is determined by
its degree, and the possible values are 0, 2, and the odd positive integers. In
particular, the same holds for the (unpointed) homotopy classes of maps.

A degree zero map is given by collapsing the source surface to a point.
This 1s of type (a).

A degree two map is given by collapsing an unorientable loop to a point
to obtain a two-sphere, and then composing with a double covering of the
projective plane. This is an orientation-false pinching composed with a double
covering, so is of type (b).

An odd positive integer degree map is given by taking an odd positive
degree covering of one Mobius band by another, and then collapsing the
boundaries to points. This is a branched covering with a single branch point,
so 1s of type (c).

In the usual way, the homotopy classes of self-maps of the real projective
plane form a monoid under composition; to calculate composites one need
only calculate the degree, and that can be done easily, even using the algorithm
given here. Thus we can identify each homotopy class with its degree, and
examine the binary operation induced by composition. We find that the monoid
is obtained from the usual multiplicative monoid of non-negative integers by

identifying two distinct non-negative integers if and only if they are even and
are equal modulo 4.

4. HOMOMORPHISMS OF SURFACE GROUPS

Throughout this section, let o: G; — G, be a homomorphism of infinite

surface groups, and G; = (S1|r), Go = (S, |r) be surface group
presentations.

4.1. REVIEW. The arguments of Sections 2, 3 give us a method for
finding a normal form for «, and hence for calculating the degree of «.
Let us itemize the steps performed.
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We choose a homomorphism of free groups A: (S;| ) — (S2 | ) which
induces «, and we choose, for some non-negative integer d, elements
wi,...,wg of (S |), and elements €,...,¢; in {1, —1}, such that

d
4.1 A(ry) = Hw,- rSwlin (Sy] ).
fe=

We then use A and (4.1) in Construction 2.10 to construct a cellular
map J: X, — X, realizing «. Here S; (resp. S,) is identified with a basis
of the free fundamental group of a specified subgraph of X; (resp. the
whole one-skeleton of X;) with a specified base vertex; also, r; (resp. )
corresponds to the boundary cycle of a certain subdivided face (resp. the
unique face). By construction, 3 restricts to a graph morphism between the
specified subgraphs, and the resulting homomorphism of free fundamental
groups agrees with A.

We apply the algorithm of Section 3 to [ to obtain a new cellular map
g': X{ — X} which is in the normal form given by Theorem 3.31. Here
X, is obtained from X, through Constructions 3.1 and 3.30, and there is a
natural map from the one-skeleton of XJ to the one-skeleton of X, and both
complexes have natural base vertices, and both base vertices will be denoted
v, . By Remarks 2.5, we can trace through the steps of the algorithm and for
each transform of X;, we can identify S; with a basis of the fundamental
group of a subgraph with a base vertex. Thus for any set E’ of edges which
corresponds to a maximal subtree of the one-skeleton of the dual complex
of Xi, we can identify S; with a basis of the fundamental group of the
one-skeleton of X] — E’. Throughout the algorithm S; is altered only up to
homotopy and change of base vertex. Moreover, up to conjugacy and inverse,
ri agrees with the boundary cycle of the resulting subdivided large face
expressed in terms of the basis §;. Now G’ gives a new lifting A" of «,
via the labelling. The boundary label of each face in X| corresponds to a
conjugate of rgtl, and the subdivided large face gives a description of A’(r)
as a product of conjugates of rzil, by viewing the large face as a compressed
version of Figure 2.4. Now we get an expression

. d
4.2) A(ry) =] [wiry w™

i=1

in which 4’ is the number of F-faces, and hence equals the degree of «.
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For some purposes, it is convenient to have a new generating set Si of
G, adapted to the normal-form map. This can be thought of as a change of
basis within the free group, but we prefer to think of it as giving a new free
group mapping onto Gy, with a specified isomorphism to the old free group,
with the property that the new relator r| arising from the boundary cycle of
the subdivided face corresponds to r;, up to conjugacy and inverse.

To define S7, we first choose a set of edges to erase in X| as follows.
Choose a maximal forest of E-edge-adjacent faces in X;, and erase the
E-edges, and then choose a maximal tree of V-edge-adjacent faces and erase
the V-edges. It is clear from Figure 3.1 that, in the prepinching regions,
the interior E-edges get erased, and the interior V-edges do not. In the
one-skeleton of the resulting CW-surface, choose a base vertex v; which maps
to vy, and choose a maximal tree, and collapse the edges; notice that these
are all E-edges, since the V-edges are loops. This gives us a surface group
presentation, (X}, v1) = (S} | ;). Now m(8'D, v): 7(X| "V, v;) — 7(X), vy)
determines a homomorphism A”: (S]| ) — (S2| ) of free groups, and we
get an equation

d//
(4.3) A" = T [wl v5 wi™

i=1

closely related to the normal form, in which d” is the degree of «.

Here all unerased V-loops, which include all the V-loops occurring in
prepinchings, determine elements of S which are sent to 1 under A’. Thus
the algorithm gives us a distinguished set K C S of generators which go to 1.

We now want to examine in detail what can be said in each of the three
types of normal norm.

4.2. THE DEGREE ZERO CASE. Suppose case (a) of Theorem 3.31 holds.

Here r, loses its significance, and we are studying a homomorphism from
a surface group to the free group m(X\"” v,) = (Sa ] ).

Form a labelled graph I" by collapsing each E-sphere to an edge. The
labelling immerses T in the graph X{", since no two E -spheres at a vertex have
the same E-label. In particular, if the induced map of fundamental groups

W(ﬁ,vll): (X, v) — W(Xgl),’ljz) 1s surjective, then the labelling identifies
r=x",
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Our erasing procedure erases all but one FE-edge in each punctured
E-sphere, and then erases V-loops incident to distinct faces as often as
possible, leaving a single face. The one-skeleton is then a copy of I" with
bouquets of V-loops at each vertex. We then collapse a maximal subtree
of T' to a vertex, to obtain the surface group presentation G; = (S| | r{).
Every element of S} is either an edge of the collapsed T", or is an unerased
V-loop. Recall that K denotes the set of elements of S} corresponding to
unerased V-loops. Then the complement, S| —XK, is in bijective correspondence
with the edge set of the collapsed I'. If we were to collapse the unerased
V-loops to vertices, we would have a face with boundary label a relation
in the fundamental groupoid of I', but this is a free groupoid, so the
relation represents a trivial element. That is, | lies in the normal closure
of K CSj.

This proves that any surjective homomorphism from a surface group to a
free group can be expressed in the form (S| | r}) — (S} | r},K) where K is
a subset of §} whose normal closure contains 7} . ‘

One can extract even more information from the diagram. For exam-
ple, it is natural to divide in half all those edges of I' which lie out-
side the maximal subtree, and subdivide the edges and faces of X| which
map to these. This introduces an orientable V-loop around the equator of
certain punctured FE-spheres, and we can erase one old V-loop for each
equator we add. The surface obtained by deleting these equators from
X7 maps to the subtree of I' obtained by deleting a point from each
edge outside the maximal subtree. Hence we have a punctured subsur-
face which maps to a tree, so its fundamental group is collapsed. The
surface X] can be recovered from the punctured surface by identifying
boundary components in pairs. The effect on the fundamental group is
to form an HNN-extension which adds a new generator conjugating one
of the boundary components to the other, and the new generator corre-
sponds to one of the specified generators of the fundamental group of I'.
This can be used to give quite a precise normal form, but we are still
some distance from recovering all the information that is currently known.
Zieschang [17, Satz 2] showed that any surjective homomorphism from
an orientable surface group onto a free group can be expressed in the
form

<x17y17"'7xn7yn ‘ (xlayl)' --(xn,yn)>

— <x1,y1,. <Xy Y l (xlayl)"'(xmyn)axl)- Xy Yeagy - 7yn>)
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where 0 < r < n. Grigorchuk and Kurchanov [7, Theorem 1] showed that
any surjective homomorphism from an unorientable surface group onto a free
group can be expressed in exactly one of two forms

2.2 2
<Z1>Z27" 9 <p ’ 212 %y
2.2 2
— <Z1»Zza ceenZp | 418 452140583845 - - 7Z21‘—1Z2r> 3
where z,,,,...,2z, are either all sent to 2, where n is even and 0 < 2r < n,

or all sent to 1, where 0 < 2r < n. An elegant proof can be found
in [8].

Ol’shanskii [15, Section 2] used diagram techniques similar to those used
here to obtain some of the above results independently.

It is interesting to note that V-loops frequently occur in the literature.
Edmonds [3] and Skora [16], in the course of their arguments, find it necessary
to prove that, for any surface map of degree zero, there exists a non-separating
V-loop; Skora uses a non-separating point of the graph I', except in the
case where I' 1s a tree and the map is trivial. Ol’shanskii’s arguments for
maps from surface groups to free groups are based on proving that there
exists a non-collapsable V-loop. Gabai [4] used three-dimensional topology
to show that every non-injective homomorphism between surface groups can
be represented by a diagram with a non-collapsable V-loop.

We now turn to the nonzero degree case, and describe the group-theoretic
formulation of branched covers.

4.3. THE BRANCHED COVERING CASE. Consider any non-negative integers

n, m, p, with m =0 or n =0, and positive integers di,...,d,. Let
G = <x17y17"')x717y717Z17'"aZm)[l)"°7Zp
2 2 d dy
‘ (x1>y1)"'(x11>yzz)zl CeZ 'tp;tll;---atpl>-

There is a canonical map from G to the surface group

G2 = <x1)y17‘ s Xy Yy 21y - - - i ‘ (xlyyl)' : '(-xn;yn)z% T 'Z;Zn>,

obtained by annihilating the 7.
The Euler characteristic of G is defined as

p
X(G):2—m~2n—p+zdl-

=1
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For example, if p = 0 then G = G;, and here the Euler characteristic plus
the rank equals 2, where the rank is the minimum number of generators, or
equivalently, the size of the generating set in the surface group presentation.

It is known that G acts, with compact quotient, as a group of isometries
on a sphere, plane or hyperbolic disc, depending as x(G) is positive, zero, or
negative, respectively. Any subgroup H of finite index is again of this form,
and the Riemann-Hurwitz formula says that y(H) = (G : H)x(G).

If we choose a surface subgroup G; in G of finite index, then we get a
homomorphism of surface groups G; — G;. A homomorphism arising in this
way 1s called a branched covering homomorphism of surface groups. It is not
difficult to construct the corresponding cellular map of CW-surfaces in normal
form, and find that it is a d-fold branched covering, where d = (G : G;), and
the dy,...,d, can be taken as the branching degrees. Conversely, any cellular
map of CW-surfaces which is a branched covering has an associated group
homomorphism of this form.

There is an orientation map from G to {41} which sends the x;, y;, t;
to 1, and the z; to —1. It follows that branched covering homomorphisms of
surface groups are orientation-true, so for infinite surface groups, the value of

d
IZ e,-e(w,f)’ in (4.1) is independent of the lifting chosen.
i=1

Let us take presentations and diagrams corresponding to the branched
covering. Consider an edge e in E, and a distinguished occurrence of e in the
boundary cycle of the single face f in F', and two distinct e-adjacent f-faces,
denoted f;, f;. These have associated a w; and a w; representing paths back to
the base vertex, so w;” le represents a path between the base vertices of f; and
fi» and for the purposes of checking signs, we may assume the base vertex is
incident to e. Since the f-faces are well e-joined, e(w;” 1wj) describes whether
the two (distinguished) e-edges in the two f-faces would be identified with a
twist, or not, that is, have the same, or different, signs, respectively, in the two
occurrences in the boundary cycle of f. But ¢ '¢; describes whether the two

adjacent f-faces have the same orientation of not. Thus e(w; 'w;) = ¢ '¢;.

d
Hence, for this choice of presentation, lz €; e(wl-)l =d = (G : Gy). In
i=1

summary, the degree of a branched homomorphism of infinite surface groups
is given by (G : Gy).
Let N denote the kernel of G — G,. Then

(G:Gy) > (G:GiN)=(G/N:GN/N) = (G, : ImG)),

so the degree is at least (G, : Im Gy).
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Notice that the degree is exactly (G, : ImGy) if and only if G = G|N,
that is, N lies in G;. But N is generated by torsion elements, and Gj 18
torsion-free, so the latter holds if and only if N is trivial, that is, G = G,
which is the case p = 0. Here we simply have an inclusion of finite index,
which corresponds to an (unbranched) covering.

In case (b) of Theorem 3.31, adding the relations to w(X7,v;) = G; which
annthilate the pinched generators leaves a surface group presentation. Let us
invent terminology to express this.

4.4. THE PINCHING CASE. A pinching homomorphism of surface groups
is a homomorphism which can be put in the form (S |r) — (S| r,K) where
(S|r) is a surface group presentation, and K is a subset of S such that
deleting the occurrences of elements of K from r leaves a word ' such
that (S — K | 7’) is a surface group presentation. Notice that the parity of the
homomorphism is odd. If some element of K occurs twice with the same
sign in r, then the homomorphism is orientation-false, and otherwise it is
orientation-true.

It can be shown that a pinching homomorphism of surface groups can be
uniquely expressed in the form (S |r) — (S| r,K) where K C S and exactly
one of the following holds:

and r = (xlayl)"'(xlnylz)7 where 0 <m<n;
S:{xbyh"'7xlz7yn7zla"'>zm}> K:{xhyl:"')xnayn})
and r = (x1,y1) - O, )27 * - 25, Where 0 <m, 1 < n;

S={91 0 X Y2ty zmts K= {21, ..., Zm},

and r = (x1,y1) - (Xn, Ya)21 - - - 2y, Where 0 <m, 1 < n;

2
and r:z:f‘---z,‘” where 0 <n < m.

The first two types are orientation-true, and the last two types are
orientation-false.

Suppose now that a: G; — G, factors as a pinching homomorphism
of surface groups o': G; — Ima, followed by an inclusion of finite index
o’: Ima — G,. We wish to verify that G(a) = (G, : Ima).

It is straightforward to construct a lifting A and an equation (4.1) with

d = (Gy : Ima), so we have G(a) < (G, : Ima), and we may assume
G(a) < (G2 : Ima). We wish to obtain a contradiction.
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Notice that the parity of o’ is odd, so o’ does not factor through a free
group, and hence « itself cannot factor through a free group. Thus G(a) > 0.

Let d = G(a). We may assume that we started with a lifting A, and an
equation (4.1), that is, d is smallest possible. Thus in the process of applying
the algorithm of Section 3, we perform no cancellation of F-faces, and we
finish with a Normal Form map of degree d. We are not in case (a), since
d > 0, and we are not in case (b) or (c), since d < (G, : Imq). This is
impossible, as desired.

Thus we have proved the following.

4.5. THEOREM (Kneser-Edmonds-Skora). If a: G; — G, is a homo-

morphism between infinite surface groups, then exactly one of the following
holds.

(a) The homomorphism « factors through a surjective homomorphism from
G, to a free group; here G(a) =0 < (G, : Ima).

(b) For some positive integer d, o factors as a pinching homomorphism
followed by an index d inclusion; here G(a)=d = (G, : Im ).

(c) For some positive integer d, « is a non-injective d-fold branched covering
homomorphism of surface groups; here G(a)=d > (G, : Im ). ]

Notice that in type (b) we have the usual factorization as a surjection
followed by a (finite index) inclusion, while in type (c¢) we have a rather unusual
finite index inclusion followed by a surjection. In type (a), we have a special
surjection to a free group, with kernel generated by at least half the generators
in a suitable surface group presentation, followed by a homomorphism which
need not be injective.

4.6. COROLLARY (Kneser [10], [11]). If a homomorphism between infinite
surface groups has degree 1 then it is a (possibly bijective) pinching
homomorphism. [

47. COROLLARY. If G is a surface group with negative Euler charac-
teri&tic, and o is an endomorphism of G, then either o is an automorphism,
or the image of o has infinite index in G, and the kernel of « is generated
as normal subgroup by a set consisting of at least half the generators in some
surface group presentation of G.
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Proof. If (G : Imc) is infinite, then Im«a is a free group, and by a
Grigorchuk-Kurchanov-Zieschang result recovered in Case 4.2, the kernel of
« is generated as normal subgroup by a set consisting of at least half the
generators in some surface group presentation of G.

This leaves the case where Im« has finite index n in G. To see that
n = 1, we suppose that n > 1 and obtain a contradiction as follows. By
the Riemann-Hurwitz formula, and the fact that x(G) < 0, we see that
x(Ima) = nx(G) > x(G), so the rank of Im« is less than the rank of G.
This is impossible, since Im« is a quotient of G, so n = 1. Hence « 1s
surjective. .

Since « cannot factor through a group of rank strictly smaller than that of
G, we see that o cannot factor through a non-trivial pinching homomorphism.
By Theorem 4.5, we see that « is a branched covering homomorphism. Thus
G has finite index m in some group

H:<x1,y1,...,x,l,y,,,zl,...z,n,z‘l,...,tp
| Cetuyn) o Gony yn)zd 22ty - 1, €8 Y
where G = <x1,y1,...,x,l,yn,zl,...zm l (xl,yl)---(xn,yn)z%---z,zn>. By the
Riemann-Hurwitz formula, and the fact that y(G) < 0, we see that
X(G) = mx(Hh) < x(H), 50 0 = X(G) —X(H) = p ~ 1>} = 0. Tt fol-

lows that m = 1, and that « is bijective. [
We can also recover Kneser’s description of degree.

4.8. THEOREM (Kneser [10], [11]). Let a: G; — G, be a homomorphism
of infinite surface groups, and consider an equation (4.1) arising from some
lifting of «.

p .

(1) If « is orientation-true, then G(a) = ‘Z €; e(w;)|, where the map
i=1

€: ($2] ) — {£1} is induced from the orientation map of G,.

(i) If o is orientation-false, and either d is even, or the index (G, : Im @)
is infinite, then G(a) = 0.

(i) If « is orientation-false, and d is odd, and (G2 : Ima) is finite, then
G(a) = (G, : Ima).

Moreover, the lifting A can be chosen so that d = G(a), with the original
choice of presentations.  []
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This result can be used to prove a theorem of Nielsen’s which predates
Kneser’s result.

4.9. THEOREM (Nielsen [14, Section 26], [9]). If (S|r) is a surface
group presentation of a (surface) group G, and o is an automorphism of G,
then there exists an automorphism A of the free group (S| ) which maps r

to a conjugate of r or r~', such that the induced map on G is o.

Proof. This is clear if G is finite, so we may assume that G is infinite.
Since « is an automorphism, the kernel is trivial, so « does not have degree
zero, and no pinching takes place. Thus a must be a branched covering
homomorphism, by Theorem 4.5. We saw in Definition 4.3 that branched
covering homomorphisms are orientation-true. It follows from Theorem 4.8
(a), that, among orientation-true maps, the degree is multiplicative with respect
to composition. Thus G(a)G(a™!) = G(1) = 1. Thus G(c) = 1. By the final
part of Theorem 4.8, we can choose a lifting of « to an endomorphism A -of
the free group on S which sends r to a conjugate of r or r—!. A theorem
of Zieschang [17] then shows that A is an automorphism. (A simple proof
of surjectivity, using Fox derivatives, is given in Theorem V.4.11 of [1], and
injectivity is proved using Nielsen reductions, as in Theorem 1.10.5 of [1].) [

The foregoing argument contains elements of the original proof by Nielsen,
and of the algebraic proof by Zieschang [17], [18, Corollary 5.4.3].

4.10. REMARKS. Recall that for two groups G; and G;, the set of group
homomorphisms from G; to G, is partitioned into orbits under the natural
action of the group Aut(G;) via composition. Two homomorphisms in the
same orbit are said to be strongly equivalent.

Without going into details, let us describe some known results.

Case 4.2, above, mentions surjective homomorphisms from surface groups
to free groups. Such homomorphisms have been thoroughly analyzed by
algebraic techniques, starting with the work of Zieschang [17], and Ol’shanskii
[15], and culminating in the work of Grigorchuk and Kurchanov [7]. This
work 1s distilled in [8] where it is shown that if oj,ap: Gy — G, are
homomorphisms from a surface group to a free group, then they are strongly
equivalent if and only if o;(Gy) = ap(Gy) and 041(Gfr) == ozz(Gf). Together
with knowing the maps described in Case 4.1, this allows one to calculate
the exact number of strong equivalence classes of surjective homomorphisms
from a given surface group to a given free group.
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Important work of Gabai and Kazez [5], [6] which uses three-dimensional
topology shows that, if o, r: Gy — Gy are nonzero-degree homomorphisms
between infinite surface groups, they are strongly equivalent if and only if
Glar) = G(a), a1(Gy) = an(Gy) and ay(G) = aa(GT). They also show
that, if a1, an: G; — G, are homomorphisms between surface groups at least
one of which is finite, then o, o, are strongly equivalent if and only if
G(ay) = Glan), ay(G)) = ax(Gy) and ai(G) = xa(GY).

5. A WORKED EXAMPLE

In this section we will apply the algorithm to a rather trivial example to
illustrate the algebraic manipulations involved.

Consider the homomorphism «: {(a,b,c,d | (a,b)(c,d)) — {(x,y | (x,y))
induced by the homomorphism of free groups A: (a,b,c,d| ) — (x,y| )
determined by (a,b.c.d) — (x,y,x,y"1).

We have

Al(a, b)(c.d)) = (x, ). y™") = (o, )y, ) Iy T

1

1—_\'_1_\ X

= (%, )

Since « is orientation-true, Kneser’s Theorem 4.8 implies that G(a) is obtained
by applying the orientation map to 1 —x~!'y~!x, so G(a) = 0. Thus we want
to apply the algorithm to transform A into a map A’ inducing «, such that
A'((a,b)(c,d)) = 1.

Form the CW-surfaces associated with the given surface group presenta-
tions, so the free group generators can be viewed as loops.

Let us subdivide y into two edges, one again called y, and the other called
z. We will call the vertices u# and v, so that x is a loop at v, y joins v to
u, and z joins u to v. The algorithm requires us to subdivide x, but, in order
to keep the example simple, we shall not do this. Now we subdivide » and d
into two edges labelled y1, z1, and y2, 72 respectively. Here the first letter
indicates the image label, while, since we plan to depict the moves in planar
diagrams, we also want a label to identify equal edges, and it is convenient
to use integers for this identification. Similarly, we label ¢ and 4 as x1 and
X2, respectively.

We first use Construction 2.9 to get a cellular map, and hence a diagram,
and then, after some simple applications of Construction 3.5 and 3.11, we
can obtain the first diagram in Figure 5.1. Now we can apply the two-step
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