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BIBLIOTHEK
AN ALGORITHM FOR CELLULAR MAPS OF CLOSED SURFACES

by Warren DICKS and H. H. GLOVER

ABSTRACT. The purpose of this article is to use diagrammatic methods to give
proofs, accessible to algebraists, of some important topological results of H. Kneser,
A.L. Edmonds, and R. Skora; we then describe some consequences for homomorphisms
between surface groups. Cellular maps between two-dimensional CW-complexes can
be represented by diagrams which, in turn, can be interpreted algebraically in terms
of fundamental groupoids. For diagrams representing cellular maps between closed
surfaces, we show how to apply certain homotopy equivalences algorithmically to
obtain a normal-form map, which is a branched covering, or a pinching followed by a
covering, or a map which collapses a graph of punctured spheres to a graph immersed
in the one-skeleton of the target surface. We then indicate how the algorithm can
be expressed entirely in terms of formal manipulations with presentations of surface
groupoids, yielding algebraic proofs of results about homomorphisms between surface
groups.

1. INTRODUCTION
We begin by recalling some basic concepts.

1.1. DEFINITIONS. Let 8 be a map between closed surfaces (without
boundary).

Then (B is a branched covering if deleting finitely many points from the
source and from the target yields a covering.

We say that § is a (possibly trivial) pinching if it is obtained by collapsing,
to a point, a compact subsurface with a single boundary component.

The (geometric) degree of 3, denoted G(03), is the least non-negative integer
d such that there is a map [’ homotopic to (3, such that the inverse image

under 3" of some 2-disk consists of d 2-discs, each mapped homeomorphically
by (" to the chosen disk.
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Results of H. Kneser [11, p. 354], A.L. Edmonds [3], and R. Skora [16]
show that if G(8) is nonzero, then [ is homotopic either to a branched
covering or to the composite of a pinching followed by a covering. In the
case where G((3) is zero, ( is homotopic to a map which is not surjective.
Thus one of the following holds:

(a) [ is homotopic to a map which is not surjective;
(b) B is homotopic to the composite of a pinching followed by a covering;

(c) B is homotopic to a branched covering.

In case (a), G(B) = 0, and in case (b) (resp. (c)), G(B) is given by the
degree of the covering (resp. branched covering).

This allows one to compute the degree via homological means, which is
the essence of a classical result of Kneser [10], [11]. Edmonds and Skora
further discuss cases where the surfaces are not necessarily closed, but we
wish to restrict our attention to the closed case.

The main purpose of this article is to prove these Kneser-Edmonds-Skora
results using diagrammatic techniques developed by van Kampen, Lyndon, and
Ol’shanskii. We shall give an algorithm which applies homotopy equivalences
to a cellular map between closed surfaces, and yields a map in normal form,
that, in the non-zero degree case, is a branched covering, or, after pinching,
1s a covering, while, in the degree zero case, the source surface is expressed
as a union of spheres with various punctures based at the poles, and these
punctured spheres are collapsed to arcs, to give a graph immersed in the
one-skeleton of the target surface. Recall that a graph map immersion is a
locally injective graph map, so that the induced map of fundamental groups
is injective. In particular, the algorithm yields the degree of the map.

In the non-zero degree case, we then have the Kneser-Edmonds-Skora
result, and, in the zero degree case, we recover preliminary steps towards results
previously obtained by several authors, notably Zieschang [17], Edmonds,
Skora, Ol’shanskii [15], and Grigorchuk and Kurchanov [7]. The present
article is very much in the spirit of Ol’shanskii’s article.

The proofs by Edmonds and Skora are brief, simple, direct, and essentially
algorithmic, but are not readily expressible in algebraic terms. Our proof, al-
though substantially longer, has the feature that it deals throughout with closed
surfaces, without cutting them up, and uses elementary homotopy operations
which readily lend themselves to algebraic intrepretation. So we claim that we
have fulfilled our main objective of giving algebraic proofs of the substantial
group-theoretic consequences of these topological theorems. There is a natural
motivation to have algebraic proofs of algebraic results, especially when they
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are obtained topologically, and our work fits into this scheme in a useful way;
for example, it can be used in the (algebraic) proof of Theorem 4.9 of [2].

To give an idea of the sort of algebraic consequences of the algorithm, it
is convenient to introduce some terminology.

1.2. DEFINITIONS. Recall that a group G is called a surface group it G
is the fundamental group of a closed surface, or, equivalently, G has a surface
group presentation, by which we mean a one-relator presentation (S | r) such
that r is cyclically reduced, and each element of S occurs exactly twice in
r, with exponent 1 or —1, and the face-adjacency relation on S U S~ has
only one equivalence class. Here face-adjacency is the equivalence relation
determined by identifying si' and s3* whenever s}'s; “ occurs in the cyclic
expression of r.

It follows that G is a surface group if and only if G has a presentation

2 2
<X1,y1,- e Xy Yns <1y - - - Zm I (xlayl)' : '(xnayn)Z] ©e 'Zm>7

for some non-negative integers m, n, and here one can arrange that either m
or n is zero. Recall that (x,y) denotes xyxy, where overlines denote inverses.

There is an associated orientation map e€: G — {£1} which, for the latter
presentation, sends the x; and the y; to 1, and the z; to —1. The kernel of
e is denoted GT. We say G is orientable (resp. unorientable) if (G : GT)
is 1 (resp. 2). Thus a surface group is orientable if it is the fundamental
group of an orientable closed surface. By the orientation module we mean the
7Z.G-module Q which consists of the abelian group Z, on which each g € G
acts as €(g) € {1} = Aut(Z).

The finite surface groups have order 1 or 2, and are the fundamental groups
of the two-sphere and the projective plane, respectively. The infinite surface
groups correspond to the surface group presentations in which the relator has
length at least 4, and these are the fundamental groups of the aspherical closed
surfaces, that is, closed surfaces whose universal covers are contractible.

A homotopy class of continuous maps between path-connected topological
spaces determines an equivalence class of homomorphisms between their
fundamental groups, where equivalence corresponds to composition with an
inner automorphism of the target group. For aspherical closed surfaces, this
correspondence between equivalence classes of morphisms is bijective, so, in
quite a strong sense, the study of homotopy classes of continuous maps between

aspherical closed surfaces is much the same as the study of homomorphisms
between infinite surface groups.



210 W. DICKS AND H. H. GLOVER

1.3. DEFINITIONS. Let «a: G; — G, be a homomorphism of surface
groups.

If o together with the orientation maps of G; and G, form a commuting
triangle, we say that « is orientation-true, and otherwise « 18 orientation-false.
Thus « is orientation-true if and only if a='(G)) = G .

For any surface group presentations G; = (Sy | 1), Gy = (S» | r2), there
exists a homomorphism of free groups A: (S;| ) — (S» | ) which induces

a, and then there exist a non-negative integer d, elements wj,...,wy Of
(S| ), and elements €;,...,¢4 in {1, —1}, such that, in (S, | ),

d
(1.1) A(ry) = [ Jwirs wi"

=

The degree of «, denoted G(«), is the least value of d which occurs as
we range over all the possible choices at our disposal. If G, or G, is finite,
this concept is rather degenerate and we shall not be discussing this case. If
G, and G, are infinite, the algorithm given in this article provides a lifting
A" (S| )= (Sy]) of o, and an expression of A’(r)) as a product of G(a)
conjugates of rfl.

Notice that if G(a) = 0, then « factors through the natural surjection
(S2] ) — (S| ra); conversely, if o factors through any map from a free
group F to (S, | rp), we can use the freeness of F to factor this map through
the natural surjection. Thus G(a) = 0 if and only if « factors through a free
group F. By replacing F with the image of o in F, we see that G(a) =0
if and only if « factors through a surjective map to a free group.

Kneser’s homological calculation of the degree, in the formulation of Skora
[16], yields the following.

1.4, THEOREM (Kneser [10], [11]). Let a: Gy — Gy be a homomorphism
of infinite surface groups, and consider an equation (1.1) arising from some

lifting of .

d
(1) If « is orientation-true, then G(a) = lz €; e(w;)
i=1

, where the map

€: (S, | ) — {F1} is induced from the orientation map of G,.

(i) If « is orientation-false, and either d is even, or the index (G, :Im )
is infinite, then G(a) = 0.

(iii) If « is orientation-false, and d is odd, and (G, : Im ) is finite, then
G(a) = (G : Ima).
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1.5. REMARK. Under pullback along «, the orientation module Q, for
G, becomes a G;-module, again denoted Q,, and « induces a change
of eroups map in cohomology H*(a,Q): H*(G2, %) — H*(G{,Q,). By
Poincaré duality, H*(G, ) ~ O Qzg, & = Z with trivial G, -action, and

, - & 0 Z if o is orientation-true,
H (G, ri - ‘
Gy &) 1 ®26, 22 7./27 if « is orientation-false,
with trivial G, -action. Using a lifting A and an equation (1.1), and techniques

such as those used in the proof of Theorem V.4.9 of [1], one can calculate
d

that, up to sign, H*(a, ) acts as multiplication by > e e(w).
i=1

d
Hence, if « is orientation-true, the non-negative integer ‘Z € e(w,)' which
i=1

occurs in Theorem 1.4 (a) is independent of the lifting chosen to get (1.1),
and the theorem says that, in this case, there exists a lifting such that all the
e;e(w;) are equal.

Even if « is orientation-false, the parity of d (which is the parity of
d
> e e(w;)) is independent of the lifting chosen to get (1.1), and will be

i=1
called the parity of «, which is either even or odd.

In particular, if « is any homomorphism of infinite orientable surface
groups, and Gy = (S; | r1), G, = (S2 | rp). are surface group presentations,
then there exists a homomorphism of free groups A: (S; | ) — (S2| ) which
induces «, such that A(r;) is a product of G(«) conjugates of r, (or of r;"'),
with no conjugate of r;' (resp. rp) needed in this expression.

The Kneser-Edmonds-Skora results give even more information about
homomorphisms between infinite surface groups, but we shall postpone making
the precise statements until Section 4.

In outline, the paper is structured as follows. In Section 2, we present some
of the terminology we will use, describe some preliminary constructions, and
recall how to associate, with a homomorphism between surface groups, a
cellular map between surfaces which realizes the homomorphism. A cellular
map between surfaces can be visualized as a labelled diagram, and, in Section
3, we give the algorithm for homotoping a diagram until a normal form is
reached. In Section 4, we describe consequences for group homomorphisms,
such as Kneser’s Theorem determining degrees, and Nielsen’s Theorem
[14, Section 26] that every automorphism of a surface group lifts to an
automorphism of the covering free group which sends the surface relator to a
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conjugate of itself or its inverse. In Section 5 we indicate how the algorithm
can be described in terms of formal manipulations of presentations of surface
groupoids, by describing a trivial example which illustrates the algorithm.

2. DIAGRAMS OF CELLULAR SURFACE MAPS

In this section we introduce the setting in which we shall work, and
describe the connection with group theory.

2.1. DEFINITIONS. By a two-dimensional CW-complex X we shall mean
a combinatorial CW-complex of dimension at most two, in which each cell
has a preferred orientation. Formally we have the following situation.

As a set, X is the disjoint union of three sets V, E, F, whose elements
are called the vertices, edges, and faces, of X, respectively. |

There are given maps ¢, 7, from E to V, and, for each edge e, the
vertices te, Te are called the initial and terminal vertices of e, respectively.
If te = 7e, we say that e is a loop. For each vertex v we understand that
L =7v=TU.

We write E*! for the Cartesian product E x {1,—1}, and for any
(e,e) € E*! we write e for (e,e). We identify e = ¢!. We use the same
conventions for the faces. For a vertex v, we understand that v! = v = v~ L.

For ¢ € E, we define t(e™!) = Te, and 7(e™ 1) = ce.

Each face f of X has an associated boundary cycle which is a finite
alternating sequence

—_ €] €n
(21) 0f—vo,el,vl,...,vn_l,en,vn,
where n > 0, the v; are vertices, v, = vy, the e; are edges, each ¢; is =+1,
l
and u(ef’) = v;—1, 7T(ef") = v;. We define
-1 _ —¢ -
Of " =Vp, €, ", Unet,y. .., 01,60 0

It is thus implicit that we are assigning to each closed two-cell a polygonal
structure, and a distinguished vertex where the boundary cycle begins and ends.
Notice that we are allowing vertices of valence one, so a boundary cycle need
not be reduced.

A one-dimensional CW-complex, that is, a two-dimensional CW-complex
with no faces, will be called a graph.
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