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BIBLIOTHEK
AN ALGORITHM FOR CELLULAR MAPS OF CLOSED SURFACES

by Warren DICKS and H. H. GLOVER

ABSTRACT. The purpose of this article is to use diagrammatic methods to give
proofs, accessible to algebraists, of some important topological results of H. Kneser,
A.L. Edmonds, and R. Skora; we then describe some consequences for homomorphisms
between surface groups. Cellular maps between two-dimensional CW-complexes can
be represented by diagrams which, in turn, can be interpreted algebraically in terms
of fundamental groupoids. For diagrams representing cellular maps between closed
surfaces, we show how to apply certain homotopy equivalences algorithmically to
obtain a normal-form map, which is a branched covering, or a pinching followed by a
covering, or a map which collapses a graph of punctured spheres to a graph immersed
in the one-skeleton of the target surface. We then indicate how the algorithm can
be expressed entirely in terms of formal manipulations with presentations of surface
groupoids, yielding algebraic proofs of results about homomorphisms between surface
groups.

1. INTRODUCTION
We begin by recalling some basic concepts.

1.1. DEFINITIONS. Let 8 be a map between closed surfaces (without
boundary).

Then (B is a branched covering if deleting finitely many points from the
source and from the target yields a covering.

We say that § is a (possibly trivial) pinching if it is obtained by collapsing,
to a point, a compact subsurface with a single boundary component.

The (geometric) degree of 3, denoted G(03), is the least non-negative integer
d such that there is a map [’ homotopic to (3, such that the inverse image

under 3" of some 2-disk consists of d 2-discs, each mapped homeomorphically
by (" to the chosen disk.
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Results of H. Kneser [11, p. 354], A.L. Edmonds [3], and R. Skora [16]
show that if G(8) is nonzero, then [ is homotopic either to a branched
covering or to the composite of a pinching followed by a covering. In the
case where G((3) is zero, ( is homotopic to a map which is not surjective.
Thus one of the following holds:

(a) [ is homotopic to a map which is not surjective;
(b) B is homotopic to the composite of a pinching followed by a covering;

(c) B is homotopic to a branched covering.

In case (a), G(B) = 0, and in case (b) (resp. (c)), G(B) is given by the
degree of the covering (resp. branched covering).

This allows one to compute the degree via homological means, which is
the essence of a classical result of Kneser [10], [11]. Edmonds and Skora
further discuss cases where the surfaces are not necessarily closed, but we
wish to restrict our attention to the closed case.

The main purpose of this article is to prove these Kneser-Edmonds-Skora
results using diagrammatic techniques developed by van Kampen, Lyndon, and
Ol’shanskii. We shall give an algorithm which applies homotopy equivalences
to a cellular map between closed surfaces, and yields a map in normal form,
that, in the non-zero degree case, is a branched covering, or, after pinching,
1s a covering, while, in the degree zero case, the source surface is expressed
as a union of spheres with various punctures based at the poles, and these
punctured spheres are collapsed to arcs, to give a graph immersed in the
one-skeleton of the target surface. Recall that a graph map immersion is a
locally injective graph map, so that the induced map of fundamental groups
is injective. In particular, the algorithm yields the degree of the map.

In the non-zero degree case, we then have the Kneser-Edmonds-Skora
result, and, in the zero degree case, we recover preliminary steps towards results
previously obtained by several authors, notably Zieschang [17], Edmonds,
Skora, Ol’shanskii [15], and Grigorchuk and Kurchanov [7]. The present
article is very much in the spirit of Ol’shanskii’s article.

The proofs by Edmonds and Skora are brief, simple, direct, and essentially
algorithmic, but are not readily expressible in algebraic terms. Our proof, al-
though substantially longer, has the feature that it deals throughout with closed
surfaces, without cutting them up, and uses elementary homotopy operations
which readily lend themselves to algebraic intrepretation. So we claim that we
have fulfilled our main objective of giving algebraic proofs of the substantial
group-theoretic consequences of these topological theorems. There is a natural
motivation to have algebraic proofs of algebraic results, especially when they
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are obtained topologically, and our work fits into this scheme in a useful way;
for example, it can be used in the (algebraic) proof of Theorem 4.9 of [2].

To give an idea of the sort of algebraic consequences of the algorithm, it
is convenient to introduce some terminology.

1.2. DEFINITIONS. Recall that a group G is called a surface group it G
is the fundamental group of a closed surface, or, equivalently, G has a surface
group presentation, by which we mean a one-relator presentation (S | r) such
that r is cyclically reduced, and each element of S occurs exactly twice in
r, with exponent 1 or —1, and the face-adjacency relation on S U S~ has
only one equivalence class. Here face-adjacency is the equivalence relation
determined by identifying si' and s3* whenever s}'s; “ occurs in the cyclic
expression of r.

It follows that G is a surface group if and only if G has a presentation

2 2
<X1,y1,- e Xy Yns <1y - - - Zm I (xlayl)' : '(xnayn)Z] ©e 'Zm>7

for some non-negative integers m, n, and here one can arrange that either m
or n is zero. Recall that (x,y) denotes xyxy, where overlines denote inverses.

There is an associated orientation map e€: G — {£1} which, for the latter
presentation, sends the x; and the y; to 1, and the z; to —1. The kernel of
e is denoted GT. We say G is orientable (resp. unorientable) if (G : GT)
is 1 (resp. 2). Thus a surface group is orientable if it is the fundamental
group of an orientable closed surface. By the orientation module we mean the
7Z.G-module Q which consists of the abelian group Z, on which each g € G
acts as €(g) € {1} = Aut(Z).

The finite surface groups have order 1 or 2, and are the fundamental groups
of the two-sphere and the projective plane, respectively. The infinite surface
groups correspond to the surface group presentations in which the relator has
length at least 4, and these are the fundamental groups of the aspherical closed
surfaces, that is, closed surfaces whose universal covers are contractible.

A homotopy class of continuous maps between path-connected topological
spaces determines an equivalence class of homomorphisms between their
fundamental groups, where equivalence corresponds to composition with an
inner automorphism of the target group. For aspherical closed surfaces, this
correspondence between equivalence classes of morphisms is bijective, so, in
quite a strong sense, the study of homotopy classes of continuous maps between

aspherical closed surfaces is much the same as the study of homomorphisms
between infinite surface groups.
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1.3. DEFINITIONS. Let «a: G; — G, be a homomorphism of surface
groups.

If o together with the orientation maps of G; and G, form a commuting
triangle, we say that « is orientation-true, and otherwise « 18 orientation-false.
Thus « is orientation-true if and only if a='(G)) = G .

For any surface group presentations G; = (Sy | 1), Gy = (S» | r2), there
exists a homomorphism of free groups A: (S;| ) — (S» | ) which induces

a, and then there exist a non-negative integer d, elements wj,...,wy Of
(S| ), and elements €;,...,¢4 in {1, —1}, such that, in (S, | ),

d
(1.1) A(ry) = [ Jwirs wi"

=

The degree of «, denoted G(«), is the least value of d which occurs as
we range over all the possible choices at our disposal. If G, or G, is finite,
this concept is rather degenerate and we shall not be discussing this case. If
G, and G, are infinite, the algorithm given in this article provides a lifting
A" (S| )= (Sy]) of o, and an expression of A’(r)) as a product of G(a)
conjugates of rfl.

Notice that if G(a) = 0, then « factors through the natural surjection
(S2] ) — (S| ra); conversely, if o factors through any map from a free
group F to (S, | rp), we can use the freeness of F to factor this map through
the natural surjection. Thus G(a) = 0 if and only if « factors through a free
group F. By replacing F with the image of o in F, we see that G(a) =0
if and only if « factors through a surjective map to a free group.

Kneser’s homological calculation of the degree, in the formulation of Skora
[16], yields the following.

1.4, THEOREM (Kneser [10], [11]). Let a: Gy — Gy be a homomorphism
of infinite surface groups, and consider an equation (1.1) arising from some

lifting of .

d
(1) If « is orientation-true, then G(a) = lz €; e(w;)
i=1

, where the map

€: (S, | ) — {F1} is induced from the orientation map of G,.

(i) If « is orientation-false, and either d is even, or the index (G, :Im )
is infinite, then G(a) = 0.

(iii) If « is orientation-false, and d is odd, and (G, : Im ) is finite, then
G(a) = (G : Ima).
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1.5. REMARK. Under pullback along «, the orientation module Q, for
G, becomes a G;-module, again denoted Q,, and « induces a change
of eroups map in cohomology H*(a,Q): H*(G2, %) — H*(G{,Q,). By
Poincaré duality, H*(G, ) ~ O Qzg, & = Z with trivial G, -action, and

, - & 0 Z if o is orientation-true,
H (G, ri - ‘
Gy &) 1 ®26, 22 7./27 if « is orientation-false,
with trivial G, -action. Using a lifting A and an equation (1.1), and techniques

such as those used in the proof of Theorem V.4.9 of [1], one can calculate
d

that, up to sign, H*(a, ) acts as multiplication by > e e(w).
i=1

d
Hence, if « is orientation-true, the non-negative integer ‘Z € e(w,)' which
i=1

occurs in Theorem 1.4 (a) is independent of the lifting chosen to get (1.1),
and the theorem says that, in this case, there exists a lifting such that all the
e;e(w;) are equal.

Even if « is orientation-false, the parity of d (which is the parity of
d
> e e(w;)) is independent of the lifting chosen to get (1.1), and will be

i=1
called the parity of «, which is either even or odd.

In particular, if « is any homomorphism of infinite orientable surface
groups, and Gy = (S; | r1), G, = (S2 | rp). are surface group presentations,
then there exists a homomorphism of free groups A: (S; | ) — (S2| ) which
induces «, such that A(r;) is a product of G(«) conjugates of r, (or of r;"'),
with no conjugate of r;' (resp. rp) needed in this expression.

The Kneser-Edmonds-Skora results give even more information about
homomorphisms between infinite surface groups, but we shall postpone making
the precise statements until Section 4.

In outline, the paper is structured as follows. In Section 2, we present some
of the terminology we will use, describe some preliminary constructions, and
recall how to associate, with a homomorphism between surface groups, a
cellular map between surfaces which realizes the homomorphism. A cellular
map between surfaces can be visualized as a labelled diagram, and, in Section
3, we give the algorithm for homotoping a diagram until a normal form is
reached. In Section 4, we describe consequences for group homomorphisms,
such as Kneser’s Theorem determining degrees, and Nielsen’s Theorem
[14, Section 26] that every automorphism of a surface group lifts to an
automorphism of the covering free group which sends the surface relator to a
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conjugate of itself or its inverse. In Section 5 we indicate how the algorithm
can be described in terms of formal manipulations of presentations of surface
groupoids, by describing a trivial example which illustrates the algorithm.

2. DIAGRAMS OF CELLULAR SURFACE MAPS

In this section we introduce the setting in which we shall work, and
describe the connection with group theory.

2.1. DEFINITIONS. By a two-dimensional CW-complex X we shall mean
a combinatorial CW-complex of dimension at most two, in which each cell
has a preferred orientation. Formally we have the following situation.

As a set, X is the disjoint union of three sets V, E, F, whose elements
are called the vertices, edges, and faces, of X, respectively. |

There are given maps ¢, 7, from E to V, and, for each edge e, the
vertices te, Te are called the initial and terminal vertices of e, respectively.
If te = 7e, we say that e is a loop. For each vertex v we understand that
L =7v=TU.

We write E*! for the Cartesian product E x {1,—1}, and for any
(e,e) € E*! we write e for (e,e). We identify e = ¢!. We use the same
conventions for the faces. For a vertex v, we understand that v! = v = v~ L.

For ¢ € E, we define t(e™!) = Te, and 7(e™ 1) = ce.

Each face f of X has an associated boundary cycle which is a finite
alternating sequence

—_ €] €n
(21) 0f—vo,el,vl,...,vn_l,en,vn,
where n > 0, the v; are vertices, v, = vy, the e; are edges, each ¢; is =+1,
l
and u(ef’) = v;—1, 7T(ef") = v;. We define
-1 _ —¢ -
Of " =Vp, €, ", Unet,y. .., 01,60 0

It is thus implicit that we are assigning to each closed two-cell a polygonal
structure, and a distinguished vertex where the boundary cycle begins and ends.
Notice that we are allowing vertices of valence one, so a boundary cycle need
not be reduced.

A one-dimensional CW-complex, that is, a two-dimensional CW-complex
with no faces, will be called a graph.
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2.2. DEFINITIONS.

Let X be a two-dimensional CW-complex.

The edges and vertices of X form a graph, denoted X and called the
one-skeleton of X. We say that X is connected if XD is a connected graph.
The free groupoid on X" will be denoted 7X".

Let e be an edge of X. A vertex v is said to be incident to e if te = v
or 7¢ = v, and in the former (resp. latter) case we call e (resp. e') an
edge with a distinguished incidence to v.

Let f be a face of X, and suppose that df is as in (2.1). The distinguished
vertex vy = v, will be denoted vert(f). There is associated an element of
7XD | denoted w(f), which is vert(f) if n =0, and is the product el ey
if n>1. A vertex v is said to be incident to f if some v; equals v, and we
then call the pair (f.i) a face with a distinguished incidence to v. An edge
e is said to be incident to f if some ¢; equals e, and we then call the pair
(f.1) a face with a distinguished incidence to e. For 1 <1 < n, we say that
e;”| and e; % are adjacent in f, where the subscripts are interpreted modulo
n, that is, 0 is interpreted as n.

By the groupoid of X, denoted 7X, we mean the groupoid obtained from
7X by imposing the relation w(f) = vert(f) for each face f of X. For
any vertex v of X the fundamental group of X at v, denoted w(X.v). is
the subgroup(oid) of #X consisting of all elements with initial and terminal
vertex v. If X is connected then changing the choice of v gives an isomorphic
group, and there is specified an isomorphism which is unique up to conjugacy.

We say that X is a (closed) CW-surface if it is a finite, connected,
two-dimensional CW-complex such that for each edge e there are exactly two
faces with a distinguished incidence to e, and for each vertex v the edges
with a distinguished incidence to v form a single (non-empty) equivalence
class under the equivalence relation generated by the relation of being adjacent
in some face.

The former condition, on edges, implies that the edges with a distinguished
incidence to v form cycles under the relation of being adjacent in some face,
and the latter condition, on oriented edges, then requires that there be exactly
one cycle at v, called the edge cycle around v.

2.3. EXAMPLES.
(1) A simplicial complex structure on a surface yields a CW-surface.

(i) Any surface group presentation (S |r) has an associated CW-surface
X with one vertex, denoted v, with edge set S, and with one two-cell, denoted
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f, and the boundary cycle of f is the sequence in ST! determined by r.
Here 71X = 7(XW v), 71X = w(X,v), and there are natural identifications
XM = (S| ) and 7X = (S| r).

2.4. DEFINITIONS.

Let X = (V,E,F) be a CW-surface.

The dual surface X* = (F*,E*,V*) of X is defined to be any CW-surface
constructed as follows. Let V*, E*, F* be copies of V, E, F respectively,
with bijective correspondence denoted by *. Then X* has F*, E* and V*
as vertex set, edge set, and face set, respectively. For any e € E, there are
two different faces with a distinguished incidence to e. If we denote these
by (f,i), (f,i'), with f, f’ in F, then in X*, the edge e* is incident to
the vertices f*, f"*. For any v € V, the elements of X with a distinguished
incidence to v are cyclically ordered, and this cyclically ordered set is called
the face-and-edge cycle around v ; by considering alternate terms we get
the edge cycle around v and the face cycle around v. Applying * to the
face-and-edge cycle around v gives a cyclic sequence which is taken to be
the boundary cycle of v*, once a distinguished vertex is chosen.

We say that X is oriented if each edge e occurs with opposite signs in
the two faces with a distinguished incidence to e, and, in this event, we can
use the signs to orient the dual surface X* consistently.

We say that X is orientable if we can obtain an oriented CW-surface by
replacing some faces with their inverses; otherwise X is unorientable.

In the remainder of this section and the next, all paragraphs which are
devoted to the unorientable case are marked with a Maltese cross (%), and,
by skipping these, the reader interested primarily in orientable surfaces can
follow the discussion for that case.

Consider a loop e in X, let v be the vertex incident to e, and consider a
face f incident to e. Here two vertices in the boundary cycle of f are equal,
which results in f getting attached to itself at a point.

If this attachment is performed without twisting, we say that e is an
orientable or two-sided loop. If X 1is orientable than clearly all loops are
orientable.

M If this attachment is performed with a twist, we say that e is an
unorientable, or one-sided loop in X. This can be expressed in a more
combinatorial manner by saying that e is unorientable if the boundary cycle of
fE!, viewed cyclically, contains a subsequence ¢, v, e, v, e, and the sequence

¢, e, e, ¢ of four distinct edges with a distinguished incidence to v is
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not in the correct order, with respect to the cyclic ordering by face-adjacency.
Here the CW-complex resulting from collapsing e to a vertex is a CW-surface.

A useful way to codify a groupoid presentation of 7X is to write
(E|wOf)(f € F)), so 71X = (E|R), where R is the set of words in -
determined by the boundary cycles, one word for each face. There is no need
to specify the vertices, since they correspond to equivalence classes in E+L
under the equivalence relation generated by face-adjacency.

We can form a new CW-surface Y from X by successively erasing edges
incident to two distinct faces (so melding two faces into one) until only one
face f is left. The set E’ of erased edges then corresponds to a maximal
subtree in the one-skeleton of the dual complex of X. Here X and Y both
have the same vertex set, and Y can be viewed as the complement of E’ in
X and 7Y is a subgroupoid of 7X. One can even choose a retraction of mX
onto 7Y by choosing a suitable image in 7Y of each erased edge. Notice
that w(9f) is an element of the free group w(Y'V.v), where v = vert(f), and
there is an isomorphism m(X.v) ~ 7(Y,v). Hence we have a homomorphism
from a free group w(YV.v) onto w(Y.v) ~ w(X.v), and the kernel is the
normal subgroup generated by w(9f).

Frequently we will want to alter the choice of E’ by exchanging an
edge b for some edge y of Y, such that b divides the face f into two
faces fi, f», each of which has a single occurrence of y in the boundary
cycle. Either of these subfaces can be used to choose an element of the free
groupoid 7YV which gets equated to b in the groupoid 7X. We now have
a new Y with YV =y Uiyl — {b}, and a map Y’V — 7Y which
induces an isomorphism of free groupoids 7Y ~ 7Y’. The single face f’ of
Y’' is obtained by glueing together f; and f> along the two copies of b.
It is straightforward to check that the isomorphism 7Y ~ 7}’ carries w(f)
to a conjugate of w(f’) or its inverse. The situation is amply illustrated in
Figure 2.1, which depicts a labelled CW-subcomplex formed from two faces
which are adjacent in two ways, so there are two ways to choose edges
to be erased. In general, the symbol denoting an oriented path in X is
placed on the right of the path, and similarly for edges. Here, if we erase
denote inverses. But if we erase y, we get a face with clockwise boundary
cycle cbapgabesr. Algebraically, erasing b corresponds to using one of the
small faces as a relation to eliminate b by identifying b = agxyz3é, and

whether to erase b or y affects the choice of free group mapping onto the
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surface group, but, as we have just seen, the free groups are related via an
isomorphism which respects the given relators, up to conjugacy and inverse.

q Yo P q
T a T a T a
Y b Yyl > Y b
z ; z 4
s c , C " s c
FIGURE 2.1

Changing edges to be erased

It usually happens that we are given a basis S of the free group w(Y'"V, v),
and an expression of w(9f) as a word r in S*!, so we get a presentation
7(X,v) = (S| r). One standard method of choosing a basis S of 7w(¥Y, v)
is to choose a maximal subtree Yy of YV and associate a free generatof to
each edge of YV — Y, in the natural way. This choice of S ensures that the
above presentation is a surface group presentation. An alternative construction
is to collapse the edges Ey of Yj to get a new CW-surface Z with one vertex
and one face, such that 7Z is isomorphic to 7m(X,v). Algebraically, in passing
from the groupoid presentation 7X = (E | R) to the groupoid presentation
mY = (E—E" | w(df)), we successively use the erased edges to meld pairs
of relators, and then annihilate the elements of Ey to get a surface group
presentation of 7wZ.

We will be interested in the situation where we are given a presentation
to start with.

2.5. REMARKS. Let G be a surface group, and let (S| r) be a surface
group presentation of G.

In this article we will be applying homotopy equivalences to a CW-sur-
face X with fundamental group G, and we wish to ensure that the given
presentation is always recoverable. Some of the difficulties arise from the
choices involved. The choice of base point v affects the data only up to
conjugacy. The choice of set of edges E’ determining a maximal tree in the
one-skeleton of the dual surface affects the data up to isomorphism of the
covering free group m(X"" — E’,v), and we have seen that the isomorphism
respects the relators up to conjugacy and inverse. Thus if S is associated -
to a basis of one of the free groups in such a way that r corresponds to
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a conjugate of the relator or its inverse, then § is associated to a basis of
each of the free groups in such a way that r corresponds to a conjugate of
the relator or its inverse. We want to ensure that each homotopy equivalence
specifies an isomorphism of covering free groups so as to respect relators in
this way.

We start with the CW-surface associated to the presentation (S |r), and
apply homotopy equivalences using four operations called subdivision, erasing,
collapsing and expanding.

Subdivision of edges and faces changes the covering free group by a simple
isomorphism which preserves relators.

Erasing a set of edges E” which determine a subtree of the one-skeleton of
the dual complex changes, by a simple isomorphism which preserves relators,
the covering free group corresponding to a choice of E’ containing E”.

Collapsing, in the cases of interest to us, concerns the three elementary
operations of collapsing to a vertex an edge which is not a loop, collapsing to
an edge a two-edged face which is not a sphere, and collapsing a one-edged
face to a vertex. If we want to collapse an edge which is not a loop, we
first adjust the choice of E’ to ensure that it does not contain the edge to
be collapsed. It is then straightforward to check that, for each of the three
elementary collapsing operations, the covering free group changes by a simple
isomorphism which preserves relators.

Expanding is the reverse of collapsing, and changes the covering free group
by a simple isomorphism which preserves relators.

At any stage we can lose the base vertex, and prior to its disappearance
we have to change the covering free group by conjugating by a chosen path
to a new base vertex.

2.6. DEFINITIONS. Let X; and X, be two-dimensional CW-complexes.
A map of sets F: X; — X, is said to be cellular if the following are satisfied :

If v is a vertex of X, then ((v) is a vertex of X,.

If e is an edge of X, then [(e) is a vertex or an edge of X,, and
Lf(e) = Bule), TB(e) = f1(e).

If f is a face of X;, exactly one of the following holds:

B(f) is a vertex v, and all the terms of B(Of) are v ;

B(f) is an edge e, one of the terms of B(9f) is e, one is ¢!, and the
rest are vertices;
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B(f) is a face, every edge incident to f is mapped to an edge, and
06(f) = B(Of) ; here, with Of as in (2.1), we understand that

(22) /B(af) = /B(UO)a /8(61)61 ) /B(Ul)a SR alB(Un—l)a ﬁ(en)en> /B(’U”) .

This definition of cellular map is more restrictive than the usual definition,
but it does include simplicial maps, with suitably chosen orientations of
simplices, so we do not lose any homotopy classes of maps.

2.7. CONSTRUCTION. Let (#: X; — X, be a cellular map of two-dimen-
sional CW-complexes.

Then 3 induces a cellular map on the one-skeletons S): X{"V — XV
and this determines a groupoid homomorphism m(3M): 7x\" — 7x{V.
The latter then induces a groupoid homomorphism 7(5): 7X; — 7X,. If
we specify a vertex v of X;, then we obtain a group homomorphism
(6, v): (X1, v) — (X2, B(v)).

The diagram associated to (3 consists of the CW-complex X; together
with a labelling of its cells, which labels each cell with its image cell in X,.
For any cells ¢; of Xy, ¢y of X,, if ¢o = [B(c;) we say that ¢; is a ¢, -cell.
With our definition of cellular map, there are three types of labelling that a
face of X can have, namely, we can have a v-face, an e-face, or an f-face,
and these can be depicted as in Figure 2.2.

o

FIGURE 2.2

The three types of labelled cell

We remark that the labelled regions in Figure 2.2 are precisely the types of
regions used by Ol’shanskii [15]. These diagrams, which represent elementary
cohcepts in topology, can be viewed as Lyndon-van Kampen diagrams in
which trivial relators play a larger part than usual. Here we have a groupoid
setting which allows various vertices, rather than just the one vertex allowed
when considering groups.
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In terms of diagrams, (3 is a covering if for each vertex v of X; the
cycle of labels (in X;) of faces (in X;) with a distinguished incidence to v
is precisely the cycle of faces (in X;) with a distinguished incidence to the
label F(v) of v. Also [ is a branched covering if for each edge e of X
the labels (in X,) of the two faces (in X;) with a distinguished incidence to
e are precisely the two faces (in X,) with a distinguished incidence to the
label ((e) of e; here deleting all vertices leaves a covering. We will abuse
notation and say that (§ is a pinching if X, is obtained from X, by slicing
open non-loop edges and inserting punctured projective planes and punctured
tori with cell structures and labels as depicted in Figure 3.1. Here (3 acts by
collapsing these subsurfaces to edges, so is homotopic to a pinching, and our
abuse of notation is reasonable.

Our main activity will be to apply operations to these diagrams. Let us
note one which will be used frequently.

2.8. CONSTRUCTION (type: subdivision). Suppose we are given two-di-
mensional CW-complexes X;, X,, a face f of X;, and a cellular map
B: X1 — {f} — Xz, such that m(BV)(w(f)) is trivial in 7X{", that is,
(B )W) = Bvert(f).

We wish to subdivide f to obtain a refinement X| of X;, and an extension
g X — X, of (.

Let Of be as in (2.1), and let 5(9f) denote the sequence in (2.2). Since
m(BD)w(f)) is trivial in 7X", either every term of (2.2) is a vertex v,
or some subsequence of (2.2) has the form e, v,v,...v,e €. In the former
case we can extend 8 to X; by labelling f as v. In the latter case, we can
subdivide f into two faces by adding an edge with label the vertex u = L(e®)
slicing off a piece of f with label e, as in Figure 2.3; here we use @ to
indicate a region with boundary label which determines a trivial element of
the free groupoid.

U & v

v (&
= 0

FIGURE 2.3
Subdividing
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We can continue in this way, and by induction on the length of Of, we
obtain a subdivision of f which allows an extension of (3.

It is convenient to mention a more complicated operation at this stage.

2.9. CONSTRUCTION (type: subdivision). Suppose we are given two-di-
mensional CW-complexes X, X, and a cellular map 8V: X{" — XV of
the one-skeletons, such that, for each face f of X;, 7(3")(w(f)) is trivial in
wX,, that 1s, there exists d > 0, and elements w; of WXSJ), and faces f; of
X5 such that, in the free groupoid ’/TX&U ,

d
(2.3) T(3V)w(f)) = H w W) ;.
i=1

Essentially as in the previous construction, we wish to subdivide each face
of X; to obtain a refinement X of X;, and an extension 3': X| — X, of 3D,

Let f be a face of X;, and suppose (2.3) holds. We first subdivide f
into d + 1 two-cells by drawing in d balloons-on-sticks, as in Figure 2.4,
which are subdivided and labelled in such a way that, if the boundary cycle
i1s read clockwise, the labelling of the ith stick, starting at the basepoint,
gives the word w;, and the labelling of the boundary of the ith balloon,
starting at the attaching point and reading counter-clockwise, is Jf. We
label the ith balloon f;, and orient it in the manner dictated by the label on
the boundary.

FIGURE 2.4

Subdividing for a relation
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In the subdivided f there remains a single two-cell f* which is not labelled.
Here, (2.3) implies that

d
w(BD) @) = 7 (BO) () [[wr wi ™ w; = 87 (vert(f")

i=1

in 7x{". By Construction 2.8, we can subdivide f’, and extend 3'". Thus
we find we can subdivide each face of X, to obtain a refinement X| of X,
and an extension (': X} — X of 3.

We conclude this section by recalling how one constructs a cellular map
of CW-surfaces from a homomorphism of surface groups.

2.10. CONSTRUCTION (type: subdivision). Let a: G; — G> be a homo-
morphism of surface groups.

Let (S| r), (S2|r) be surface group presentations of Gy, Ga, re-
spectively, and choose a lifting A: (S| ) — (S2| ) of a. Thus A is a
homomorphism of free groups such that A(r)) lies in the normal subgroup
generated by r,, and the resulting homomorphism (S; | 1) — (S2 | 1) is a.

Let X; = (w.S;.g) and X; = (v.53.f) denote the CW-surfaces associated
to the presentations (S; | 1) and (S, | r2), respectively.

We want to subdivide X; to obtain a CW-surface X’l, and a cellular map
3 X —X,.

We begin by subdividing the one-skeleton Xgl) , to get a graph I', as follows.
For each s € S;, A(s) 1s a word 1n S5, possibly empty, and hence A(s) is either
1, or is a non-empty reduced word ef‘ ---ein Sy, thatis, n > 1, each ¢; lies
in 5>, and each ¢; 1s 1 or —1.If A(s) = 1 we label s with the vertex v ; in the
second case, we add n— 1 new vertices to subdivide s into 1 edges, denoted
si'....s&, and label each s; with e; having the same orientation. Doing this for
each element of §; gives us a labelled graph T", with the labels coming from
Xé“. Notice that the two-cell of the subdivided X; has as boundary cycle the
subdivided r), and the labelling gives a word in /T(Xél), v) which corresponds
to A(ry). Since this word equals v in w(X5.v), we can use Construction
2.9 to further subdivide X; and obtain a CW-surface X| and a cellular map
3 X} — X». Moreover 7(8'V. w): n(X". w) — (X", v) can naturally be
identified with A: (§; | ) — (S» | ), and #(3".w): 7(X|., w) — 7(X>.v) can
naturally be identified with a: (S | r;) — (S, | r2). Thus we have a cellular
map of CW-surfaces which realizes «.
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Notice that the cellular map is constructed from an equation of the form
(1.1). We can apply the algorithm of the next section to this map, to get a new
cellular map, from which we can extract a new equation of the form (1.1),
without altering the given presentations, since at each step we can choose
isomorphisms of the covering free groups which respect the relator up to
conjugacy and inverse. Each element of S; will be transformed into a path
in a labelled one-skeleton without changing the homotopy class in the surface
underlying X ; this amounts to choosing a new labelling for each element of
S1, which, in turn, amounts to choosing a new lifting at the free group level.
This whole process will then give non-trivial group-theoretical information,
although not so much as in the topological situation.

3. THE ALGORITHM

Throughout this section let 3: X; — X, be a cellular map of CW-surfaces.

Let V, E, and F denote the sets of vertices, edges, and faces, respectively,
of X,. We then have a diagram with V-faces, E-faces, and F'-faces, as depicted
in Figure 2.2.

The aim of this section is to alter 8 by composing it with various cellular
homotopy equivalences of X; and X, (based on the operations of contracting,
expanding, erasing, and subdividing), until we arrive at the minimum possible
number of F-faces. These alterations of 3 can be viewed as homotopies,
since one is free to imagine that there is a surface X underlying X; that
has lines inscribed on it, and that these lines can be deformed continuously.
Abusing notation then, we will say that the altered forms of § are homotopic

to (.

3.1. CONSTRUCTION (type: subdivision). If X, has aloop e, we subdivide
e by adding a new vertex v, and, in X;, subdivide each e-edge, and each
e-face, by adding a new v-vertex, and a new v-edge, respectively.

By our definition of CW-surface, X, has an edge. Thus we have the
following.

3.2. CONDITION. There is at least one edge in X,, but there are no loops.
Hence, in Xy, no E-edge is a loop, or equivalently, all loops are V -loops.
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We will not make any further adjustments to X,, except in the case of a
branched covering where we may have to apply Construction 3.30.
We now want to describe the basic configurations.

3.3. DEFINITIONS.

Suppose that w;, w, are two distinct vertices of X;, and d;, da, d3 are
three distinct one-cells of X, such that d; is a loop at w,, and d;, d3 join w
to w,. Let g be a face of X; with boundary label wl,dltwl,dg,wz,d;%wl.
In this event we say that (the closure of) g is a loop triangle. We say that g
is an anmular triangle if d; 1s an orientable loop.

M We say that g is a Mébius triangle if d; is an unorientable loop.

Suppose further that § sends w; and d; to a vertex v of X;, sends d>,
d; and g to a one-cell e € ET! of X,, and sends w, to the other vertex u
of e; in this event we say that ¢ is a loop e-triangle. If d; is an orientable
loop, we say that g is an annular e-triangle.

Y If d, is an unorientable loop, we say that g is a Mébius e-triangle.

Two loop E-triangles are said to be E-adjacent if they have an E-edge
in common.

By an orientation-true prepinching, we mean four consecutive E-adjacent
triangles such that two pairs have orientable V-loops in common, and the
V-loops have a common vertex, which determine a labelled CW-subcomplex
as depicted in Figure 3.1(b). There are specified two edges which are incident
to only one face; these edges are said to be the boundary edges of the
prepinching. (We allow the possibility that the two boundary edges become
identified in X;, and in this case the prepinching is the whole diagram, a
torus.) The remaining V- and E- edges are called the interior edges of the
prepinching.

U U
€ e e
el o e e
(a) (b)
FIGURE 3.1

The two elementary types of prepinching
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XM By an orientation-false prepinching we mean two E-adjacent triangles
having an unorientable V-loop in common, which determine a labelled
CW-subcomplex as depicted in Figure 3.1(a). There are specified two edges
which are incident to only one face; these edges are said to be the boundary
edges of the prepinching. (We allow the possibility that the two boundary
edges become identified in X, and in this case the prepinching is the whole
diagram, a projective plane.) The remaining V- and E- edges are called the
interior edges of the prepinching.

3.4. DEFINITION. The measuring quadruple of the diagram consists of
the following non-negative integers:

(1) the number of F-faces,
(2) the number of E-faces which have boundary length at least four,
(3) the number of V -faces,
(4) the number of edges which are not interior edges in prepinchings.

The quadruples are ordered lexicographically reading from (1) to (4); this
1s a well-ordering.

All subsequent operations will reduce the measuring quadruple, and since
the quadruples are well-ordered, the procedure must eventually stop.

3.5. CONSTRUCTIONS (type: subdivision).

(a) If, for some v € V, the diagram contains a v-face, then we choose an
e € E which is incident to v in X,, and subdivide the v-face into e-triangles
by adding a vertex and e-edges, as depicted in Figure 3.2 (a).

e

(a)

FIGURE 3.2

Subdividing into triangles

(b) If, for some ¢ € E, with vertices u = w(e), v = 7(e), the diagram
contains an e-face which has boundary length at least four, we subdivide the
e-face into e-triangles as depicted in Figure 3.2 (b).




AN ALGORITHM FOR CELLULAR MAPS OF CLOSED SURFACES 225

These operations reduce the measuring quadruple, since they reduce the
second or third coordinate without affecting the preceding coordinates.

These are the first of several situations where we use subdivision, usually
preceded by erasing, to express a homotopy between two maps which collapse
a disc to a tree. Notice that it is important not to disturb the boundary of the
disc, since we are not allowed to damage F-faces by collapsing E-edges.

We may now assume that we have the following.

3.6. CONDITION. There are no V -faces.
All E-faces have boundary length at most three.

Since an E-face has to have boundary length at least two, we then have
only E-triangles and E-bigons, and no other FE-faces.

Our next strategy is to eliminate some edges and faces.

3.7. CONSTRUCTION (type: collapsing). If the diagram contains a V-edge
joining two distinct vertices of X;, then we collapse the V-edge, and identify
the two vertices.

This operation reduces the measuring quadruple, since it reduces the fourth
coordinate, and does not increase any of the other coordinates.

We may therefore assume we have the following.
3.8. CONDITION. All V-edges are loops.

3.9. TERMINATING CASE. If our diagram contains an E -face of boundary
length two, and the two edges are identified in X, then X| is a sphere, and

B is a degree zero map which collapses it to an edge which is not a loop,
and we have the Normal Form 3.31(a).

We may therefore assume we have the following.

3.10. CONDITION. [If an E-face has boundary length two, then the two
edges are not identified in X, .
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3.11. CONSTRUCTIONS (type: collapsing).

(a) If, for some e € E, the diagram contains an e-face of boundary length
two, whose edges are not identified in X, then the closure of the face is an
e-disc, and we collapse it to an e-edge, as in Figure 3.3 (a).

(b) If the diagram contains an e-face of boundary length three, and two
of the edges are identified in X;, then, by Conditions 3.6 and 3.8, for some
v € V, the third edge is a v-loop, the e-face is a v-disc, and we then collapse
this v-disc to a wv-vertex, as in Figure 3.3 (b).

These operations reduce the measuring quadruple, since they reduce the
fourth coordinate without affecting the preceding coordinates.

U U
e V> € 1)\/\—>1.)
(b)

FIGURE 3.3
Two types of collapsing

Thus we may assume we have the following.
3.12. CONDITION. FEach E-face is a loop E-triangle.

To summarize, in terms of closures in X, all E-edges are non-loops, all
E -faces are loop triangles, there are no V-faces, and all V-edges are loops,
and are incident to two loop E-triangles.

M We now turn our attention to unorientable V -loops.

M4 3.13. CONSTRUCTION (Skora [16]; type: expand, erase, subdivide,
collapse). If an unorientable V-loop is incident to two non FE-adjacent
E -faces, then we create an orientation-false prepinching by applying the steps
depicted in Figure 3.4.

M4 This operation reduces the measuring quadruple, since it reduces the
fourth coordinate without affecting the others.

M Thus we may assume the following.
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/3 14. CONDITION. Each unorientable V-loop is the interior edge of
an orientation-false pre-prinching.

" This condition will enable us to ignore the unorientable V-loops, and
treat them as if they were hidden within edges.

d

FIGURE 3.4

Normalizing a prepinching

We now want to examine how the orientable V-loops which meet at a
vertex fit together.

3.15. DEFINITIONS. Let w be a vertex in the diagram, and denote its
label by v € V.

By a labelled cvcle around w we mean a finite sequence

glfdl-gl ----- d171-9111+1 =31 .

where each d; is an edge with a distinguished incidence to w', but is not
a v-loop, each g; is a face with a distinguished incidence to d;, and d;,
d;+; become adjacent in g¢; after omitting v-loops. That is, we are listing
face-adjacent edges, except where E-triangles have loops at w in which case
we treat the v-loop as a vertex. and pass from one E-edge to the other. Thus
we are looking at the face-and-edge cycles around w which arise when we
collapse to w all the v-loops at w'.

There are various types of labelled cycles. For any e in E, an e-triangle
can be FE-adjacent to another e-triangle or to an F-face. By finiteness of
the diagram, every e-triangle lies in a labelled cycle of e-triangles, as in
Figure 3.5 (a), or in a sequence joining together two F-faces, as in Figure 3.5

(b). In the case of Figure 3.5 (a), we say that the e-faces form a punctured
e-sphere.
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(a) (b)

FIGURE 3.5

Adjacent e-triangles

"H Notice that, by Condition 3.14, any unorientable loops are identified in
neighbouring pairs.

The whole subsurface is collapsed to e by /. Thus we see that one
possibility for a labelled cycle around w consists of e-triangles and e-edges.

Consider now the case of Figure 3.5 (b). Here we get a sequence, starting
at an f-face, for some f € F with a distinguished incidence (f,i) to e,
and ending in an f’-face, for some f’ € F with a distinguished incidence
(f',i') to e. We say that the f-face and the f’-face are e-joined. There are
two possibilities. Either (f,i) # (f’,i’), so they are the two faces with a
distinguished incidence to e (in X»), or (f,i) = (f'.i’). In the former case,
we say the f-face and the f’-face are well joined, and in the latter case we
say they are badly joined. Notice that if they are badly joined, then the two
F-faces are both f-faces, and they must be distinct f-faces, since if they are
equal, then their distinguished e-edges must be equal, and these e-edges are
then incident to zero or two e-faces and one f-face, which contradicts the
surface property.

From Figure 3.5 (b), we see that the second possibility for a labelled cycle
around w consists of F-faces joined together cyclically by FE-triangles.

If the F-faces in a labelled cycle around w are well-joined, then it is easy
to see that the corresponding cycle of labels in F is given by repeating the
face cycle around v in X, an integral number of times; if, moreover, there
is only one labelled cycle around w, then the number of times the face cycle
around v is repeated will be called the branching degree at w.

If all the faces are F'-faces, and all E-joined F-faces are well joined, then
the corresponding map is a branched covering, since it becomes a covering if
all the vertices are deleted.

Here the number of F'-faces is a multiple of the size of F, and the quotient
is the degree d of the map, and the map is then a d-fold branched covering.
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If d =1 then the map is a homeomorphism. If the branching degree at
each vertex is I, then the map is a covering.

U

FIGURE 3.6

Collapsing

3.16. CONSTRUCTIONS. Suppose that two annular E-triangles have a
common V-edge, and a common E-label, but do not lie in a prepinching.

Thus, for some e € E, with vertices u,v € V, two annular e-triangles
have an orientable v-loop in common, and the v-loop is not an interior edge
of a prepinching. We consider various possibilities for the intersection of (the
closures of) the two annular e-triangles. Since the two e-triangles have an
orientable loop in common, they get separated into different face cycles after
collapsing the loop to a vertex, so they cannot have an e-edge in common.
However, they may have a common u-vertex.

(a) (type: erasing, subdividing, collapsing). If the intersection of the two
annular e-triangles is precisely the wv-loop, then we erase the w-loop, and
draw in a u-edge which 1s not a loop, and we can now collapse the resulting
triangles, as depicted in Figure 3.6. Thus we take an annulus, which is a
compact subsurface with two boundary components, and homotope it to a
loop formed by two edges, in such a way that the boundaries are respected.

(b) (type: expanding, erasing, subdividing, collapsing). If the two annular
e-triangles with a common v-loop also have a common u-vertex, then we
create an orientation-true prepinching, as depicted in Figure 3.7. Thus we
take a punctured torus, which is a compact subsurface with a single boundary
component, and fit it into a sliced-open edge, in such a way that the boundary
1s respected.

Each of these two operations reduces the measuring quadruple, since it
reduces the fourth coordinate without affecting the preceding coordinates.

We may therefore assume that we have the following.
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3.17. CONDITION. Each V-loop is either interior to a prepinching, or is
an orientable V -loop incident to two E-faces with different E-labels.

Moreover, all E-faces are loop triangles and there are no V -faces.

U

G

FIGURE 3.7

Normalizing a prepinching

3.18. CONSTRUCTION (type: expanding-collapsing). Suppose that, at
some vertex of the diagram, there are two distinct labelled cycles having
an E-label in common.

Thus there exist two e-edges incident to a vertex, and these two e-edges
are separated into different labelled cycles by some orientable v-loop at the
vertex, as in the left diagram in Figure 3.8.

FIGURE 3.8

Readjusting
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We expand the two e-edges into e-triangles, and then collapse the resulting
c- and d-triangles to c- and d-edges, as in Figure 3.8, without disturbing the
two boundary components at any stage. Possibly the interior e-edge equals one
of the d-edges, and possibly, the exterior e-edge equals one of the c-edges;
in this event, the corresponding identifications must be maintained throughout
the operation.

Thus we have applied a homotopy which does not affect the measuring
quadruple, and we can now apply the Constructions 3.16 (a) and (b), which
will reduce the measuring quadruple.

Hence we may assume the following.

3.19. CONDITION. At each vertex, distinct labelling cycles have disjoint
label sets.

3.20. CONSTRUCTION (type: expanding, erasing, subdividing, collapsing).
Suppose there is a vertex w, such that there is only one labelling cycle around
w, and there is a V-loop incident to w which is not interior to a prepinching.

Since collapsing the V-loop at w separates the face cycle around w into
two disjoint cycles, and, by hypothesis, collapsing all the V-loops at w leaves
a single face cycle, there must be some V-loop which connects up the two
face cycles, giving us the situation depicted in the left diagram in Figure 3.9.

FIGURE 3.9

Normalizing a prepinching

It is now straightforward to homotope this configuration into an orientation-

true prepinching, as depicted in Figure 3.9, without affecting the single
boundary component.
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This reduces the measuring quadruple in the fourth coordinate, without
affecting the other coordinates.

Hence we may assume the following.

3.21. CONDITION. At each vertex with a single labelling cycle, all
V-loops are interior to prepinchings.

3.22. TERMINATING CASE. If there is no F-face then we have the
following situation.

All the faces are E-triangles, and the diagram is formed by amalgamating
punctured E-spheres along the V-loops, and the E-spheres which meet at a
vertex have distinct E-labels.

The algorithm now terminates, as we have the Normal Form 3.31(a).

Hence we may assume the following.

3.23. CONDITION. The diagram has at least one F -face.

3.24. CONSTRUCTION (type: erasing and subdividing). Suppose that two
F-faces are badly E-joined, as in the left diagram of Figure 3.10.

i

FIGURE 3.10

Starting over

Here we abandon all the progress we have made. We erase all the E-edges
involved, to join up distinct faces, and so obtain a disc with a boundary label
which determines a trivial element of 7X{", as in the second diagram of
Figure 3.10. Now we apply Construction 2.7 to fill in the disc with V- and
E-faces, and so get a new diagram representing a map homotopic to J.

This procedure reduces the first coordinate of the measuring quadruple by
two.
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The foregoing construction disturbs the conditions we have obtained so
far, and we return to Construction 3.5.

Repeating the procedure up to this stage a finite number of times, we
eventually eliminate all pairs of F-faces which are badly joined. Thus we
may assume the following.

3.25. CONDITION. Each E-joined pair of F-faces is well-joined. Hence
the only faces are E-triangles forming prepinchings, and F-faces. Moreover,
the branching degree is defined at each vertex.

Proof. By Condition 3.23, there is at least one [ '-face.

Let us consider a vertex w incident to an F-face, and look at the labelled
cycle around w containing the F-face. Since F-faces are well joined, we see,
as in Definition 3.15, that as we run through the labelled cycle, the labels
run through the face-and-edge cycle around v, where v € V is the label of
w. Thus every edge incident to v occurs as a label in the labelled cycle
around w. It follows, from Condition 3.19, that there is only one labelled
cycle around w. Now, by Condition 3.21, all the V-loops at w are interior
to prepinchings. Hence all the faces incident to w are E-triangles forming
prepinchings and F-faces. It follows that the compact subsurface formed by
the F-faces and the E-triangles occurring in prepinchings is closed under
edge adjacency, so is the whole surface.

Hence the branching degree is defined at each vertex. [

3.26. TERMINATING CASE. If the branching degree is 1 at each vertex
then after the pinching, consisting of collapsing to edges the prepinching
regions which are as depicted in Figure 3.1, we have a diagram in which all
faces are F-faces, and all E-joined F-faces are well joined, and the branching
degree at each vertex is 1, so it is a diagram representing a covering.

The algorithm terminates since we have the Normal Form 3.31(b).

Hence we may assume the following.

3.27. CONDITION. The branching degree is at least two at some vertex w.

Let v € V denote the label of w. Since w has branching degree at least 2,
the face labels around w run at least twice through the faces round v. Thus

we can choose an f € F with a distinguished incidence to v, and choose the
first two terms of the labelled face sequence around w with this label. Clearly
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these two faces with distinguished vertex are distinct. Choose an e € E in
the boundary cycle of f next to the distinguished occurrence of v. Thus we
have the situation occurring in the left diagram in Figure 3.11, and the two
e-edges are distinct.

U
U
he () ()
— N (O
e (5
f
U u u
FIGURE 3.11

Starting over

M4 3.28. CONSTRUCTION (Skora [16]; type : erase-subdivide). Suppose the
diagram has at least one unorientable V-loop. ‘

" We claim that unorientable V-loops are highly mobile, in the sense that
two Mobius E-triangles, attached along an unorientable V-loop (and possibly
an E-edge) forming a Mobius band (that is, a punctured projective plane),
can slide around; this sliding has the same effect as cutting open a pair of
incident edges (resp. an edge) to form a loop, which is then identified with
the boundary of the Mobius band, while the reverse of such an operation is
performed somewhere else. This can be shown using Construction 3.13, and
its reverse, and similar arguments, and we will not go into details since they
are straightforward. These operations do not affect the first coordinate of the
measuring quadruple, which is the coordinate the operation will eventually
reduce. Thus we can move one of the unorientable V-loops into the two
e-edges, as depicted in the middle diagram of Figure 3.11.

M Now we have two f-faces, and two e-faces, which give four distinct
faces, and we erase the three edges along which they are joined, to get
an open disc, as in Figure 3.11, and the boundary label is Of,e,e™!,0f !,
which determines a trivial element in the free groupoid nX5"”. Notice that
the boundary cycle has a repeated vertex which causes the closure of the
disc to be attached to itself with a twist, and there may be other boundary
identifications. We now apply Construction 2.7 to subdivide the disc into V-
and E-faces.
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M The first coordinate of the measuring quadruple drops by two.

" As happened after Construction 3.24, we have to return to Construction
3.5 and repeat all the steps. Since the measuring quadruple is reduced in the
first coordinate, eventually it reaches a stage where it cannot drop any more.
Now we have the following.

M 3.29. CONDITION. The diagram has no unorientable V -loop.

Once the algorithm arrives here, it stops, and we do not consider the
measuring quadruple any more. We now perform a tidying operation, which
alters F', and increases the number of F-faces.

3.30. CONSTRUCTION (Edmonds [3]; type: subdivide X,, erase-sub-

divide-relabel). Suppose that there is an orientable V-loop, and hence a
pair of orientable V-loops in a prepinching region, by Condition 3.25.

()

FIGURE 3.12

Changing prepinchings to get a branched cover

It follows from Construction 3.16, and its reverse, that pairs of orientable
V-loops are highly mobile, and we can move them into the pair of e-edges
incident to w that is given by Condition 3.27, as in the left diagram in
Figure 3.12 (b). Now we can subdivide a face of X, incident to e, to create a
new face f, and new faces and vertices, as in the right diagram in Figure 3.12
(a), or, equivalently, expand the edge e into a disc. We expand each e-edge in
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X; to a disc in a corresponding manner, with the exception of the six e-edges
occurring in the left diagram in Figure 3.12 (b), where we erase, subdivide
edges, and relabel, as indicated in Figure 3.12 (b).

We see that all F-faces are well E-joined, and the branching degree is
unchanged at each old vertex, and that, at the two added vertices, the branching
degree is 2.

Repeating this operation once for every prepinching region, we eliminate
all the V-loops, and obtain a diagram in which all faces are F-faces, and all
E-joined F-faces are well joined, so it is a diagram representing a branched
covering.

The algorithm terminates since we have the Normal Form 3.31 (c).
The foregoing algorithm has proved the main result.

3.31. NORMAL FORM THEOREM (Kneser [11], Edmonds [3], Skora [16]).
If B: X, — X, is a cellular map of CW-surfaces, then there exists a cellular
map ' X| — X of CW-surfaces homotopic to 3 whose diagram satisfies
one of the following.

(a) (Degree zero) The diagram is a union of punctured E-spheres with
bouquets of V-loops at the two poles, and the V-loops are identified
in pairs in such a way that no two distinct E-spheres with a vertex in
common have the same E-label. The identifications have the property
that, at each vertex, there is only one face-and-edge cycle, but there can
be various labelled cycles. If X, is orientable, the identifications can be
chosen to respect orientations of the spheres. After collapsing the spheres
to edges, there are no faces, and all incident edges have distinct E-labels,
vielding an immersion of graphs. Here 3 has degree zero.

(b) (Pinching followed by covering) After pinching, consisting’ of collapsing
the prepinchings to edges, all faces are F-faces, all edge-adjacent pairs
are well E-joined, and the branching degree at each vertex is 1, yielding
a d-fold covering for some positive integer d. Here [ has degree d.

(¢) (Branched covering) All faces are F-faces, and all edge-adjacent pairs
are well E-joined, yielding a d-fold branched covering for some positive
-integer d. Here [3 has degree d.

3.32. COROLLARY (Kneser [10], [11]). Any cellular map of CW-surfaces
of degree 1 is homotopic to a (possibly trivial) pinching.




AN ALGORITHM FOR CELLULAR MAPS OF CLOSED SURFACES 237

The following is an interesting illustration of Theorem 3.31.

3.33. EXAMPLE: SELF-MAPS OF THE REAL PROJECTIVE PLANE. By con-
sidering the Puppe exact sequence [12, p. 238], [13, p. 3] associated to a
map S' — S' of degree 2, one finds that each pointed homotopy class of
maps from a real projective plane to a real projective plane is determined by
its degree, and the possible values are 0, 2, and the odd positive integers. In
particular, the same holds for the (unpointed) homotopy classes of maps.

A degree zero map is given by collapsing the source surface to a point.
This 1s of type (a).

A degree two map is given by collapsing an unorientable loop to a point
to obtain a two-sphere, and then composing with a double covering of the
projective plane. This is an orientation-false pinching composed with a double
covering, so is of type (b).

An odd positive integer degree map is given by taking an odd positive
degree covering of one Mobius band by another, and then collapsing the
boundaries to points. This is a branched covering with a single branch point,
so 1s of type (c).

In the usual way, the homotopy classes of self-maps of the real projective
plane form a monoid under composition; to calculate composites one need
only calculate the degree, and that can be done easily, even using the algorithm
given here. Thus we can identify each homotopy class with its degree, and
examine the binary operation induced by composition. We find that the monoid
is obtained from the usual multiplicative monoid of non-negative integers by

identifying two distinct non-negative integers if and only if they are even and
are equal modulo 4.

4. HOMOMORPHISMS OF SURFACE GROUPS

Throughout this section, let o: G; — G, be a homomorphism of infinite

surface groups, and G; = (S1|r), Go = (S, |r) be surface group
presentations.

4.1. REVIEW. The arguments of Sections 2, 3 give us a method for
finding a normal form for «, and hence for calculating the degree of «.
Let us itemize the steps performed.
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We choose a homomorphism of free groups A: (S;| ) — (S2 | ) which
induces «, and we choose, for some non-negative integer d, elements
wi,...,wg of (S |), and elements €,...,¢; in {1, —1}, such that

d
4.1 A(ry) = Hw,- rSwlin (Sy] ).
fe=

We then use A and (4.1) in Construction 2.10 to construct a cellular
map J: X, — X, realizing «. Here S; (resp. S,) is identified with a basis
of the free fundamental group of a specified subgraph of X; (resp. the
whole one-skeleton of X;) with a specified base vertex; also, r; (resp. )
corresponds to the boundary cycle of a certain subdivided face (resp. the
unique face). By construction, 3 restricts to a graph morphism between the
specified subgraphs, and the resulting homomorphism of free fundamental
groups agrees with A.

We apply the algorithm of Section 3 to [ to obtain a new cellular map
g': X{ — X} which is in the normal form given by Theorem 3.31. Here
X, is obtained from X, through Constructions 3.1 and 3.30, and there is a
natural map from the one-skeleton of XJ to the one-skeleton of X, and both
complexes have natural base vertices, and both base vertices will be denoted
v, . By Remarks 2.5, we can trace through the steps of the algorithm and for
each transform of X;, we can identify S; with a basis of the fundamental
group of a subgraph with a base vertex. Thus for any set E’ of edges which
corresponds to a maximal subtree of the one-skeleton of the dual complex
of Xi, we can identify S; with a basis of the fundamental group of the
one-skeleton of X] — E’. Throughout the algorithm S; is altered only up to
homotopy and change of base vertex. Moreover, up to conjugacy and inverse,
ri agrees with the boundary cycle of the resulting subdivided large face
expressed in terms of the basis §;. Now G’ gives a new lifting A" of «,
via the labelling. The boundary label of each face in X| corresponds to a
conjugate of rgtl, and the subdivided large face gives a description of A’(r)
as a product of conjugates of rzil, by viewing the large face as a compressed
version of Figure 2.4. Now we get an expression

. d
4.2) A(ry) =] [wiry w™

i=1

in which 4’ is the number of F-faces, and hence equals the degree of «.
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For some purposes, it is convenient to have a new generating set Si of
G, adapted to the normal-form map. This can be thought of as a change of
basis within the free group, but we prefer to think of it as giving a new free
group mapping onto Gy, with a specified isomorphism to the old free group,
with the property that the new relator r| arising from the boundary cycle of
the subdivided face corresponds to r;, up to conjugacy and inverse.

To define S7, we first choose a set of edges to erase in X| as follows.
Choose a maximal forest of E-edge-adjacent faces in X;, and erase the
E-edges, and then choose a maximal tree of V-edge-adjacent faces and erase
the V-edges. It is clear from Figure 3.1 that, in the prepinching regions,
the interior E-edges get erased, and the interior V-edges do not. In the
one-skeleton of the resulting CW-surface, choose a base vertex v; which maps
to vy, and choose a maximal tree, and collapse the edges; notice that these
are all E-edges, since the V-edges are loops. This gives us a surface group
presentation, (X}, v1) = (S} | ;). Now m(8'D, v): 7(X| "V, v;) — 7(X), vy)
determines a homomorphism A”: (S]| ) — (S2| ) of free groups, and we
get an equation

d//
(4.3) A" = T [wl v5 wi™

i=1

closely related to the normal form, in which d” is the degree of «.

Here all unerased V-loops, which include all the V-loops occurring in
prepinchings, determine elements of S which are sent to 1 under A’. Thus
the algorithm gives us a distinguished set K C S of generators which go to 1.

We now want to examine in detail what can be said in each of the three
types of normal norm.

4.2. THE DEGREE ZERO CASE. Suppose case (a) of Theorem 3.31 holds.

Here r, loses its significance, and we are studying a homomorphism from
a surface group to the free group m(X\"” v,) = (Sa ] ).

Form a labelled graph I" by collapsing each E-sphere to an edge. The
labelling immerses T in the graph X{", since no two E -spheres at a vertex have
the same E-label. In particular, if the induced map of fundamental groups

W(ﬁ,vll): (X, v) — W(Xgl),’ljz) 1s surjective, then the labelling identifies
r=x",



240 W. DICKS AND H. H. GLOVER

Our erasing procedure erases all but one FE-edge in each punctured
E-sphere, and then erases V-loops incident to distinct faces as often as
possible, leaving a single face. The one-skeleton is then a copy of I" with
bouquets of V-loops at each vertex. We then collapse a maximal subtree
of T' to a vertex, to obtain the surface group presentation G; = (S| | r{).
Every element of S} is either an edge of the collapsed T", or is an unerased
V-loop. Recall that K denotes the set of elements of S} corresponding to
unerased V-loops. Then the complement, S| —XK, is in bijective correspondence
with the edge set of the collapsed I'. If we were to collapse the unerased
V-loops to vertices, we would have a face with boundary label a relation
in the fundamental groupoid of I', but this is a free groupoid, so the
relation represents a trivial element. That is, | lies in the normal closure
of K CSj.

This proves that any surjective homomorphism from a surface group to a
free group can be expressed in the form (S| | r}) — (S} | r},K) where K is
a subset of §} whose normal closure contains 7} . ‘

One can extract even more information from the diagram. For exam-
ple, it is natural to divide in half all those edges of I' which lie out-
side the maximal subtree, and subdivide the edges and faces of X| which
map to these. This introduces an orientable V-loop around the equator of
certain punctured FE-spheres, and we can erase one old V-loop for each
equator we add. The surface obtained by deleting these equators from
X7 maps to the subtree of I' obtained by deleting a point from each
edge outside the maximal subtree. Hence we have a punctured subsur-
face which maps to a tree, so its fundamental group is collapsed. The
surface X] can be recovered from the punctured surface by identifying
boundary components in pairs. The effect on the fundamental group is
to form an HNN-extension which adds a new generator conjugating one
of the boundary components to the other, and the new generator corre-
sponds to one of the specified generators of the fundamental group of I'.
This can be used to give quite a precise normal form, but we are still
some distance from recovering all the information that is currently known.
Zieschang [17, Satz 2] showed that any surjective homomorphism from
an orientable surface group onto a free group can be expressed in the
form

<x17y17"'7xn7yn ‘ (xlayl)' --(xn,yn)>

— <x1,y1,. <Xy Y l (xlayl)"'(xmyn)axl)- Xy Yeagy - 7yn>)
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where 0 < r < n. Grigorchuk and Kurchanov [7, Theorem 1] showed that
any surjective homomorphism from an unorientable surface group onto a free
group can be expressed in exactly one of two forms

2.2 2
<Z1>Z27" 9 <p ’ 212 %y
2.2 2
— <Z1»Zza ceenZp | 418 452140583845 - - 7Z21‘—1Z2r> 3
where z,,,,...,2z, are either all sent to 2, where n is even and 0 < 2r < n,

or all sent to 1, where 0 < 2r < n. An elegant proof can be found
in [8].

Ol’shanskii [15, Section 2] used diagram techniques similar to those used
here to obtain some of the above results independently.

It is interesting to note that V-loops frequently occur in the literature.
Edmonds [3] and Skora [16], in the course of their arguments, find it necessary
to prove that, for any surface map of degree zero, there exists a non-separating
V-loop; Skora uses a non-separating point of the graph I', except in the
case where I' 1s a tree and the map is trivial. Ol’shanskii’s arguments for
maps from surface groups to free groups are based on proving that there
exists a non-collapsable V-loop. Gabai [4] used three-dimensional topology
to show that every non-injective homomorphism between surface groups can
be represented by a diagram with a non-collapsable V-loop.

We now turn to the nonzero degree case, and describe the group-theoretic
formulation of branched covers.

4.3. THE BRANCHED COVERING CASE. Consider any non-negative integers

n, m, p, with m =0 or n =0, and positive integers di,...,d,. Let
G = <x17y17"')x717y717Z17'"aZm)[l)"°7Zp
2 2 d dy
‘ (x1>y1)"'(x11>yzz)zl CeZ 'tp;tll;---atpl>-

There is a canonical map from G to the surface group

G2 = <x1)y17‘ s Xy Yy 21y - - - i ‘ (xlyyl)' : '(-xn;yn)z% T 'Z;Zn>,

obtained by annihilating the 7.
The Euler characteristic of G is defined as

p
X(G):2—m~2n—p+zdl-

=1
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For example, if p = 0 then G = G;, and here the Euler characteristic plus
the rank equals 2, where the rank is the minimum number of generators, or
equivalently, the size of the generating set in the surface group presentation.

It is known that G acts, with compact quotient, as a group of isometries
on a sphere, plane or hyperbolic disc, depending as x(G) is positive, zero, or
negative, respectively. Any subgroup H of finite index is again of this form,
and the Riemann-Hurwitz formula says that y(H) = (G : H)x(G).

If we choose a surface subgroup G; in G of finite index, then we get a
homomorphism of surface groups G; — G;. A homomorphism arising in this
way 1s called a branched covering homomorphism of surface groups. It is not
difficult to construct the corresponding cellular map of CW-surfaces in normal
form, and find that it is a d-fold branched covering, where d = (G : G;), and
the dy,...,d, can be taken as the branching degrees. Conversely, any cellular
map of CW-surfaces which is a branched covering has an associated group
homomorphism of this form.

There is an orientation map from G to {41} which sends the x;, y;, t;
to 1, and the z; to —1. It follows that branched covering homomorphisms of
surface groups are orientation-true, so for infinite surface groups, the value of

d
IZ e,-e(w,f)’ in (4.1) is independent of the lifting chosen.
i=1

Let us take presentations and diagrams corresponding to the branched
covering. Consider an edge e in E, and a distinguished occurrence of e in the
boundary cycle of the single face f in F', and two distinct e-adjacent f-faces,
denoted f;, f;. These have associated a w; and a w; representing paths back to
the base vertex, so w;” le represents a path between the base vertices of f; and
fi» and for the purposes of checking signs, we may assume the base vertex is
incident to e. Since the f-faces are well e-joined, e(w;” 1wj) describes whether
the two (distinguished) e-edges in the two f-faces would be identified with a
twist, or not, that is, have the same, or different, signs, respectively, in the two
occurrences in the boundary cycle of f. But ¢ '¢; describes whether the two

adjacent f-faces have the same orientation of not. Thus e(w; 'w;) = ¢ '¢;.

d
Hence, for this choice of presentation, lz €; e(wl-)l =d = (G : Gy). In
i=1

summary, the degree of a branched homomorphism of infinite surface groups
is given by (G : Gy).
Let N denote the kernel of G — G,. Then

(G:Gy) > (G:GiN)=(G/N:GN/N) = (G, : ImG)),

so the degree is at least (G, : Im Gy).
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Notice that the degree is exactly (G, : ImGy) if and only if G = G|N,
that is, N lies in G;. But N is generated by torsion elements, and Gj 18
torsion-free, so the latter holds if and only if N is trivial, that is, G = G,
which is the case p = 0. Here we simply have an inclusion of finite index,
which corresponds to an (unbranched) covering.

In case (b) of Theorem 3.31, adding the relations to w(X7,v;) = G; which
annthilate the pinched generators leaves a surface group presentation. Let us
invent terminology to express this.

4.4. THE PINCHING CASE. A pinching homomorphism of surface groups
is a homomorphism which can be put in the form (S |r) — (S| r,K) where
(S|r) is a surface group presentation, and K is a subset of S such that
deleting the occurrences of elements of K from r leaves a word ' such
that (S — K | 7’) is a surface group presentation. Notice that the parity of the
homomorphism is odd. If some element of K occurs twice with the same
sign in r, then the homomorphism is orientation-false, and otherwise it is
orientation-true.

It can be shown that a pinching homomorphism of surface groups can be
uniquely expressed in the form (S |r) — (S| r,K) where K C S and exactly
one of the following holds:

and r = (xlayl)"'(xlnylz)7 where 0 <m<n;
S:{xbyh"'7xlz7yn7zla"'>zm}> K:{xhyl:"')xnayn})
and r = (x1,y1) - O, )27 * - 25, Where 0 <m, 1 < n;

S={91 0 X Y2ty zmts K= {21, ..., Zm},

and r = (x1,y1) - (Xn, Ya)21 - - - 2y, Where 0 <m, 1 < n;

2
and r:z:f‘---z,‘” where 0 <n < m.

The first two types are orientation-true, and the last two types are
orientation-false.

Suppose now that a: G; — G, factors as a pinching homomorphism
of surface groups o': G; — Ima, followed by an inclusion of finite index
o’: Ima — G,. We wish to verify that G(a) = (G, : Ima).

It is straightforward to construct a lifting A and an equation (4.1) with

d = (Gy : Ima), so we have G(a) < (G, : Ima), and we may assume
G(a) < (G2 : Ima). We wish to obtain a contradiction.
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Notice that the parity of o’ is odd, so o’ does not factor through a free
group, and hence « itself cannot factor through a free group. Thus G(a) > 0.

Let d = G(a). We may assume that we started with a lifting A, and an
equation (4.1), that is, d is smallest possible. Thus in the process of applying
the algorithm of Section 3, we perform no cancellation of F-faces, and we
finish with a Normal Form map of degree d. We are not in case (a), since
d > 0, and we are not in case (b) or (c), since d < (G, : Imq). This is
impossible, as desired.

Thus we have proved the following.

4.5. THEOREM (Kneser-Edmonds-Skora). If a: G; — G, is a homo-

morphism between infinite surface groups, then exactly one of the following
holds.

(a) The homomorphism « factors through a surjective homomorphism from
G, to a free group; here G(a) =0 < (G, : Ima).

(b) For some positive integer d, o factors as a pinching homomorphism
followed by an index d inclusion; here G(a)=d = (G, : Im ).

(c) For some positive integer d, « is a non-injective d-fold branched covering
homomorphism of surface groups; here G(a)=d > (G, : Im ). ]

Notice that in type (b) we have the usual factorization as a surjection
followed by a (finite index) inclusion, while in type (c¢) we have a rather unusual
finite index inclusion followed by a surjection. In type (a), we have a special
surjection to a free group, with kernel generated by at least half the generators
in a suitable surface group presentation, followed by a homomorphism which
need not be injective.

4.6. COROLLARY (Kneser [10], [11]). If a homomorphism between infinite
surface groups has degree 1 then it is a (possibly bijective) pinching
homomorphism. [

47. COROLLARY. If G is a surface group with negative Euler charac-
teri&tic, and o is an endomorphism of G, then either o is an automorphism,
or the image of o has infinite index in G, and the kernel of « is generated
as normal subgroup by a set consisting of at least half the generators in some
surface group presentation of G.
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Proof. If (G : Imc) is infinite, then Im«a is a free group, and by a
Grigorchuk-Kurchanov-Zieschang result recovered in Case 4.2, the kernel of
« is generated as normal subgroup by a set consisting of at least half the
generators in some surface group presentation of G.

This leaves the case where Im« has finite index n in G. To see that
n = 1, we suppose that n > 1 and obtain a contradiction as follows. By
the Riemann-Hurwitz formula, and the fact that x(G) < 0, we see that
x(Ima) = nx(G) > x(G), so the rank of Im« is less than the rank of G.
This is impossible, since Im« is a quotient of G, so n = 1. Hence « 1s
surjective. .

Since « cannot factor through a group of rank strictly smaller than that of
G, we see that o cannot factor through a non-trivial pinching homomorphism.
By Theorem 4.5, we see that « is a branched covering homomorphism. Thus
G has finite index m in some group

H:<x1,y1,...,x,l,y,,,zl,...z,n,z‘l,...,tp
| Cetuyn) o Gony yn)zd 22ty - 1, €8 Y
where G = <x1,y1,...,x,l,yn,zl,...zm l (xl,yl)---(xn,yn)z%---z,zn>. By the
Riemann-Hurwitz formula, and the fact that y(G) < 0, we see that
X(G) = mx(Hh) < x(H), 50 0 = X(G) —X(H) = p ~ 1>} = 0. Tt fol-

lows that m = 1, and that « is bijective. [
We can also recover Kneser’s description of degree.

4.8. THEOREM (Kneser [10], [11]). Let a: G; — G, be a homomorphism
of infinite surface groups, and consider an equation (4.1) arising from some
lifting of «.

p .

(1) If « is orientation-true, then G(a) = ‘Z €; e(w;)|, where the map
i=1

€: ($2] ) — {£1} is induced from the orientation map of G,.

(i) If o is orientation-false, and either d is even, or the index (G, : Im @)
is infinite, then G(a) = 0.

(i) If « is orientation-false, and d is odd, and (G2 : Ima) is finite, then
G(a) = (G, : Ima).

Moreover, the lifting A can be chosen so that d = G(a), with the original
choice of presentations.  []
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This result can be used to prove a theorem of Nielsen’s which predates
Kneser’s result.

4.9. THEOREM (Nielsen [14, Section 26], [9]). If (S|r) is a surface
group presentation of a (surface) group G, and o is an automorphism of G,
then there exists an automorphism A of the free group (S| ) which maps r

to a conjugate of r or r~', such that the induced map on G is o.

Proof. This is clear if G is finite, so we may assume that G is infinite.
Since « is an automorphism, the kernel is trivial, so « does not have degree
zero, and no pinching takes place. Thus a must be a branched covering
homomorphism, by Theorem 4.5. We saw in Definition 4.3 that branched
covering homomorphisms are orientation-true. It follows from Theorem 4.8
(a), that, among orientation-true maps, the degree is multiplicative with respect
to composition. Thus G(a)G(a™!) = G(1) = 1. Thus G(c) = 1. By the final
part of Theorem 4.8, we can choose a lifting of « to an endomorphism A -of
the free group on S which sends r to a conjugate of r or r—!. A theorem
of Zieschang [17] then shows that A is an automorphism. (A simple proof
of surjectivity, using Fox derivatives, is given in Theorem V.4.11 of [1], and
injectivity is proved using Nielsen reductions, as in Theorem 1.10.5 of [1].) [

The foregoing argument contains elements of the original proof by Nielsen,
and of the algebraic proof by Zieschang [17], [18, Corollary 5.4.3].

4.10. REMARKS. Recall that for two groups G; and G;, the set of group
homomorphisms from G; to G, is partitioned into orbits under the natural
action of the group Aut(G;) via composition. Two homomorphisms in the
same orbit are said to be strongly equivalent.

Without going into details, let us describe some known results.

Case 4.2, above, mentions surjective homomorphisms from surface groups
to free groups. Such homomorphisms have been thoroughly analyzed by
algebraic techniques, starting with the work of Zieschang [17], and Ol’shanskii
[15], and culminating in the work of Grigorchuk and Kurchanov [7]. This
work 1s distilled in [8] where it is shown that if oj,ap: Gy — G, are
homomorphisms from a surface group to a free group, then they are strongly
equivalent if and only if o;(Gy) = ap(Gy) and 041(Gfr) == ozz(Gf). Together
with knowing the maps described in Case 4.1, this allows one to calculate
the exact number of strong equivalence classes of surjective homomorphisms
from a given surface group to a given free group.
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Important work of Gabai and Kazez [5], [6] which uses three-dimensional
topology shows that, if o, r: Gy — Gy are nonzero-degree homomorphisms
between infinite surface groups, they are strongly equivalent if and only if
Glar) = G(a), a1(Gy) = an(Gy) and ay(G) = aa(GT). They also show
that, if a1, an: G; — G, are homomorphisms between surface groups at least
one of which is finite, then o, o, are strongly equivalent if and only if
G(ay) = Glan), ay(G)) = ax(Gy) and ai(G) = xa(GY).

5. A WORKED EXAMPLE

In this section we will apply the algorithm to a rather trivial example to
illustrate the algebraic manipulations involved.

Consider the homomorphism «: {(a,b,c,d | (a,b)(c,d)) — {(x,y | (x,y))
induced by the homomorphism of free groups A: (a,b,c,d| ) — (x,y| )
determined by (a,b.c.d) — (x,y,x,y"1).

We have

Al(a, b)(c.d)) = (x, ). y™") = (o, )y, ) Iy T

1

1—_\'_1_\ X

= (%, )

Since « is orientation-true, Kneser’s Theorem 4.8 implies that G(a) is obtained
by applying the orientation map to 1 —x~!'y~!x, so G(a) = 0. Thus we want
to apply the algorithm to transform A into a map A’ inducing «, such that
A'((a,b)(c,d)) = 1.

Form the CW-surfaces associated with the given surface group presenta-
tions, so the free group generators can be viewed as loops.

Let us subdivide y into two edges, one again called y, and the other called
z. We will call the vertices u# and v, so that x is a loop at v, y joins v to
u, and z joins u to v. The algorithm requires us to subdivide x, but, in order
to keep the example simple, we shall not do this. Now we subdivide » and d
into two edges labelled y1, z1, and y2, 72 respectively. Here the first letter
indicates the image label, while, since we plan to depict the moves in planar
diagrams, we also want a label to identify equal edges, and it is convenient
to use integers for this identification. Similarly, we label ¢ and 4 as x1 and
X2, respectively.

We first use Construction 2.9 to get a cellular map, and hence a diagram,
and then, after some simple applications of Construction 3.5 and 3.11, we
can obtain the first diagram in Figure 5.1. Now we can apply the two-step
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yl
z1

z3 21

zl

z2

rl
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X

. e

z1
xl
ul
z1/ \v3 y3 xl vl
22 yl B
9 z3
y2
02 vl
z1
Y2 z2

FIGURE 5.1

A worked example

Construction 3.18, to pass from the first to the second, and the second to the
third diagram. Thus the first and third diagrams are obtained from the second,
by first collapsing v1 and v2, respectively, and then identifying z2 = z4, and
y2 = y3, respectively. The fourth diagram is a convenient redrawing of the
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third diagram. Now we apply Construction 3.16 (a) to identify z1 = z2 and
73 = 74, and arrive at the sixth diagram in Figure 5.1.

Now we can apply Construction 3.24 to arrive at the seventh diagram in
Figure 5.1, where we have three punctured spheres, as depicted in Figure 5.2,
and we see that vl, v2 are non-separating non-trivial V-loops, and cutting
along these leaves a sphere with four punctures, which can be opened up into
a disc by cutting along x1, yl, and z1. Thus we can rearrange the seventh
diagram in Figure 5.1 to obtain the eighth diagram.

AN (O /-

zl yl z1l v3 z1

9\

FIGURE 5.2

A normal form

To see what this says about our original group homomorphism, we express:
all the steps algebraically, by manipulating groupoid presentations.

Here X, has only one face, and we have to choose a maximal subtree, and it
is natural to choose {u, v, z}. Let us express this by writing (x,y;z | (x,y2)),
where the edges after the semicolon specify (the edge set of) a maximal
subtree among the boundary edges. Recall that for CW-surface fundamental
groupoid presentations we do not specify vertices, since they correspond to
face-adjacency cycles.

In the same spirit, we express the first diagram in Figure 5.1 as

<x1,y1,x2,y2;zl,z2;v1,y3,23
x1z1ylxlylz3, 23 z1vl, vly3)y2, y3x2y272x272)

where the edges after the second semicolon specify the edges to be erased
to form a single face, and overlines indicate inverses. Here we can identify
a=xl, b=ylzl, c=x2, d = 22y2.

Now we introduce a new vertex, two new edges v2, z4, and a new face
74 = z2v2, so the second diagram is expressed as

(x1,y1,x2,y2;71,22,v2;v1,y3,23, 74
x1z1 ylxlylz3, z_3zlv2ful,ﬁy3y—2, 740272, )z—3ﬁy2z2x22—4> ,
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and here x2 is an arc, and we identify a = x1, b = ylzl, ¢ = x2v2,
d = 72y2. (We can recover the first diagram by collapsing v2 in the maximal
subtree, and cashing in the new face relation to identify z4 = z2.)

We now collapse the edge vl in the maximal subtree, and cash in the
face relation (v1)y2 = y3, to identify the two eges y2 = y3. This obliges us
to choose new edges to erase, and we find that the fourth, and third, diagrams
are expressed as

(x1,y1,x2,¥2;71,722; 723, 74, v2
x1z1 ylxlylz3, z3 z1v2, 7402 22, ﬁﬁy2z2x2z_4> ,

and here we identify a = x1, b = ylzl, ¢ = x2v2 = 22y2x2y272, d = 722.
We now re-triangulate, and the fifth diagram can be expressed as

<x1, yvl,x2,v2;z1,22; 23,74, ul
| X121 ylx1y1z3, 23 ul z4,ulz122, y2 x2y272x274)

and here we identify a = x1, b = ylzl, ¢ = 22y2x2y222, d = 72)2.

We now collapse the edge ul, and make identifications using the face
relations z2 = (ul)z1, z4 = (u1)z3, and the sixth diagram can be expressed
as <xl,yl,x2,y2;z1;z3 l ﬁz_ly—lxlylz3,y_2x—2y2z1x2z—3>, and here we identify
a=x1, b=ylzl, c =z1y2x2y2z1, d = z1y2.

We now retriangulate, to express relations which map to relations in the
free group.

Notice that we have now lifted a to the homomorphism

A {a,bye,d| ) — (x,y] )

determined by (a,b,c,d) — (x,y,¥xy,y), and A'((a,b)(c,d)) = 1.

Moreover, by changing presentations, we can now express « in a
more natural form. We take the non-separating v-loops vl = yly2 and
v2 = x1y1y2x2, and get the presentation

<x1,y1, vl,v2;71 | x1z1, ﬁvZﬂylzlﬁxlvw :

and here we identify x2 = v2xlvl, y2 = vlyl, so a = x1, b = ylzl,
¢ =71 y2x2y2z1 = z1 ylvlo2xlylzl, d = z1y2 = z1 ylvl.

Now we can collapse the maximal subtrees, and we have a description of
our group homomorphism as follows. We have the genus two surface group
(x1,y1,v1,v2 | x1ylv2vlylu2xlvl), we first impose relations annihilating
the two generators v1, v2, to get a free group, and we then impose a relation
to get the genus one surface group. Here we can identify a = x1, b = yl,
¢ = ylvlv2xlyl, d = ylvl, and thus bd = v1, abcd = v2. This represents
« in one of the normal forms described in Case 4.2.
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