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for the diagonal 8,4 := p(2) + p(3) + p(4). The bending flows around two
diagonals 8, , and 8y, commute if and only if the pairs {p.g} and {'.q'}
intersect or are unlinked in R/mZ.

6. TORIC MANIFOLD STRUCTURES ON ’"Pi (ov) FOR m =4.5.6

In this section, we study examples of P3(a) C mP3 such that the m — 3
diagonal functions ds.....dyu—> : Pi(a) —— R never vanish. The whole space
Pi(a) consists of prodigal polygons and, by §5. the bending flows give an
action of a big (i.e. half-dimensional) torus on Pi(a). By Delzant’s theorem
(see [De], or [Gu, §1]), we can construct from the moment polytope A,
alone a toric manifold which is equivariantly symplectomorphic to the space
Pi(az). This can be achieved also by [DJ,§ 1.5]. though only up to equivariant
diffeomorphism. The latter also gives the real part. the planar polygon space
P>(a), as a 2" 3-sheeted branched cover of A,. We sum up below some
results of these constructions without writing all the details.

Without explicit mention of the confrary, a is supposed to be generic.
Contrary to the previous sections, we do not require that the perimeter of
our polygons 1s 2. It was necessary to fix the perimeter in order to define
the map ( and the value 2 is the natural choice to deal with the map
o :V,(C") — mpk But ™ FX(o) makes sense for any a € R%, and so do
the various moduli spaces "P¥(a), etc. When > a; = 2, the poﬁytope Ay 1S
a slice through the Gel'fand-Cetlin moment polytope T, of §5: for general
a it is a homothetic copy of this section.

(6.1) m =4: The condition which guarantees that d» never vanishes is
Q) # ay or a3 # ay. The space of quadrilaterals *P3 (a) is then a compact
toric manifold of dimension 2, therefore diffeomorphic to CP'. The moment
map d» has image the interval A, := I; NI, where

]1 == ['Ql—az!.al+a2] and [2 = [1&4-&3].Q4+Q3]~

{

The space *P*(a) is RP'. The quadrilateral spaces *P>(a). have long since
been classified (see for instance [Ha]). One has

1 )
D0y, { S'usS' whenl, CLorl, C I |

' otherwise
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Observe also that « is generic if and only if the boundaries of the intervals
I; and I, do not meet.

By the Duistermaat-Heckman Theorem [Gu, §2], the symplectic volume of
“Pia) is equal to the length of A,. We would then obtain the same length
if we had used the other diagonal [p(2) + p(3)|. This produces a statement of
elementary Euclidean geometry: the variation intervals of the two diagonals
of a quadrilateral with given sides in R® are the same length.

(6.2) m = 5: Conditions for which both d, and dz never vanish are
for instance o # a, and ay # as. The space of pentagons SPi(oz) is then
a toric manifold of dimension 4. The moment polytope A, € R* for (dy,d3)
is the intersection of the rectangle I,

Io = [la; — aa| , a1 + ol X [las — aal, as + as]
with the non-compact rectangular region

Qo ={(x,y) € Rs0)’ |x+y>a3 and y>x—a3 and y<x+as}.

0= 0 A
o

NI

¥
— Q| o o+ o,

FIGURE 2: The moment polytope Ag

(see Figure 2). One sees that A, has at most 7 sides. The generic a are
exactly those for which the boundary of €2, contains no corner of I, and
P3 () is then obtained by symplectic blowings up from CP* or §* x §*.
The space of planar polygons *P% () is a closed surface obtained by gluing
4 copies of A, and its Euler characteristic is given by the formula
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x(CP*(a)) = 4 — # (sides of A,)

(see [DJ], Example 1.20) and is orientable if and only if /, C w,. One has
of course x(°Pi(a)) = 2x(°*P*(a)) and P2 () is an orientable surface
(’"Pi(a) is always orientable). The possible cases, depending on the number
of sides of A, are summed up in the following table.

# of sides P () P () P () Ex. of «
3 CP? RP? 52 (2,1,5,1,2)
a) CP2#CP? Klein bottle | 72 (3,2,5,1,2)
4 or
b) 2 x §? T? T°uT? | (3,1,3,1,3)
5 (S2 x SH#CP? | T?#RP? ) (2,1,3,1,2)
6 (S? x S2)#2CP? | T2#2RP? I (2,1,1,1,2)
7 (S2 x SH#3CP2 | T2#3RP? > (4,3,4,3,4)

i A(111v131)1)

FIGURE 3: A,

(6.3) Some embeddings of the regular pentagon o = (1, 1,1,1, 1)
are not prodigal. However none are lined and thus the moduli space
Vo :=>P>(e) is diffeomorphic for small ¢ to V. where Ve :=>P3(a,) and
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ae = (1+¢,1,1,1,14¢). The moment polytope for a. has then 7 sides and
thus Vo ~ V. is diffeomorphic to (S2 x SH)#3CP2 (if k = 2, SPX(a); ~ 4).
The “limit moment polytope” A 1,1,1,1) is shown in Figure 3.

The pre-image in V. of the segments {x = e} NA, and {y = e} NAL
are 2-spheres of symplectic volume proportional to e, by the Duistermaat-
Heckman Theorem. Passing to the limit Vj, these spheres become Lagrangian,
and so cannot be complex. This shows that the action of the bending torus is
not complex — these polygon spaces are only equivariantly symplectomorphic,

not equivariantly isometric, to toric varieties.

(6.4) Any class r € P¥23(a) has a unique representative in p € 573"(04)
with p(5) = (—as5,0,0) and ~(r) := p(1) + p(2) in the half-plane
H = {z = 0,y > 0}. This provides a map v : *P*(e) — H whose
image A, is the intersection R} N R, N’H where R; and R, are the rings

R, :={veR? ‘ o) — | < |v| < a1+t

R2::{UER2||a4—a3[§|v{§a4+a3}.

FIGURE 4: Ay

The idea of reconstructing >P?(c) by gluing copies of Za goes back to
the early works of W. Thurston on planar linkages (see [TW, p.100]). The
relationship with our theory is the following : the domain A, is straightened up
into a PL-polytope A, in R? by the map v — (|v|, |v — (0, as)|) and A, is
just the moment polytope for the bending Hamiltonians 0(p) = |p(1) + p(2)|
and Ox(p) = |p(3) + p(4)].

(6.5) m = 6: The conditions o) # o, and as # ag imply that d, and
d, never vanish. However, one cannot guarantee generically d; #* 0. But we
can replace the d = (dy,d,,d3) by 6 := (01, 0,,03) where
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oy =di = |p(D) +p@)] . 2= |pB3) + p@)] , 85 :=d5 = |p(5) + p(6)|

and guarantee non-vanishing of the &;’s by the generic condition ap;—1 #F Q2.
Observe that 0;0® : Vo(C") — R (i = 1.2.3) are the functions on V,(C™)
given (on (a.b) € Vo(C™)) by the difference of the eigenvalues of the (2x2)-
matrices M} M;, where

= (o 0) we(nn) =0 )
The moment polytope in R? is the intersection of the rectangular parallelepiped
I, = [|a; — az].a; + a2l X [Jou — a3|. s + as] X [|ag — as|. as + 5]
with the region
Qi ={(x.y.00€eR|0<z<x+y. 0<x<y+zand 0<y<x+z}.
The domain Q can be described as the convex hull of the three half-lines
{(0<x=yand z=0}, {0<y=zand x=0}. {0<z=x and y =0}

or the cone R, - =3 on the hypersimplex Z;. The polytope A, has then at
most 9 facets. The length-system a is generic when the boundary of € does
not contain corners of [,. As 6 is even, the regular hexagon is not generic:
6pl(1.....1) contains 10 elements.

(6.6) The bending flows O occuring in (6.4) and 6 admit the following
generalization. For m = 2n — 1 or 2n, we define the even-step map
e : Mk — "Fk by e(p) (i) = p(2i — 1) + p(2i) taking e(p) (n) := p(m)

if m is odd. We also call e the induced maps mpk _€, npk mpk LN ”Pi

and "P* < Pk We call p € "F* even generic if e(p) is a proper
polygon. Above the space of proper polygons, the map e is a smooth
locally trivial bundle whose fiber is a product of (k — 1)-spheres. Define
0= (0.....0,) : "F* — R" by O := foe. The map O gives the side
lengths of the new polygon e(p). It is always continuous and smooth when
e(p) 1s a proper polygon. As the map e is a submersion on even-generic
polygons, the critical values of 0 are the same as those of £, the walls of 4.3.
As for the map ¢, the map O can be defined on each "P*(«). Call o € R™
even generic if "PX() only consists of even-generic polygons. For instance,
a is even-generic if iy # ay; for all i. When k=3, 9 is a moment map
for the corresponding bending action of 7" defined on even-generic polygons.

Restrict to "P3(a); for an even-generic «. Define the right-angled
polytope
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n
o = H[lazi — i1, 0 + Q1]
i=1

and consider the convex polytope A, C R”

. { InNRy-ZE) when m = 2n
Tl NRy -E)N{x, =|p(m)|} whenm=2n—-1

PROPOSITION 6.7. 1) The image of O : "P*(a), — R" is the whole
polytope A, .

2) If x € A, is a regular value of 0, the even-step map e induces, for
m = 3, a symplectomorphism from the symplectic reduction T"\O~'(x) onto

”Pi(x). []

7. REMARKS AND OPEN PROBLEMS

(7.1) Is there an octonionic version of Section 3 ? Alternately, are there
U;(H) bendings in dimension 5 (like the U,(C) bending flows in dimension 3
and U;(R) flippings in dimension 2)?

(7.2) Observe that the inclusion ™P* C "P*! becomes a bijection when
k > m — 1 (triangles are always planar, etc.). In what ways are these spaces
mPm=1 more natural than the unstable ones ?

(7.3) The m-polygons whose first diagonal is of a given length forms
a sphere bundle over a space of (m — 1)-polygons. (For k = 3 this is just
symplectic reduction by the first bending circle.) This gives an inductive way
to construct the space of m-polygons by gluing together (sphere bundles over)
the spaces of (m — 1)-polygons; it would require identification of these sphere
bundles, which in k& = 3 might be done using the Duistermaat-Heckman
theorem (where the circle bundle is determined by its Euler class).

Alternately one might work out the fibers of the whole map d of section 5.
Unfortunately in dimensions above 3 these are always singular (at, in particular,
the planar polygons).

(7.4) In [KM1] and [Wa] there are presented “wall-crossing arguments”
for identifying the spaces "™P2?(c). It would be nice to relate these to a
combination of [Du] and the paper [GS2], which presents its own wall-crossing
arguments for any symplectic reduction by a torus.
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