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To prove Proposition 4.5, it is enough to establish that for all a G CP,1,

the tangent map Ta4> : TaCP1 —> Tp{a)Sl satisfies

Ta(j)(Jv) JTa(j)(v) and u(Tao(v)., Taç(Jv)) 4uj£vJv).

By Ui -equivariance, we can restrict ourselves to a [y/r.O]. The tangent

space TaCP). is identified with {0} x C and one can take v (0,1) and

jv (0. i). One has (j)(a) (r. 0, 0),

TMv) (0,2y/r, 0), Taq>{Jv) (0,0,2Vr)- ~JTaè{v)

and ù>(Ta<t>(v),Ta(j>(Jv)) =4, while ui(v,1.

Remarks

(4.6) The results of this section show that the spaces V+(a) for generic

a are the symplectic leaves of the Poisson structure on the regular part of

mV\, or mVV\ given in (3.13) and (3.14).

(4.7) If one works in the pure quaternions 7H, the complex structure J

on Si becomes

mg (V e /H).

The sphere Sj. is a co-adjoint orbit of Ui(H) and the Hermitian form w is

the Kirillov-Kostant form (see [Gu, Theorem 1.1]).

(4.8) The isomorphism between the symplectic reductions of the Grass-

mannian G2(Cm) and the product of CP1 's that underlies our results 3.9,

4.4 and the proof of 4.5 is a symplectic version of the Gefifand-MacPherson

correspondence ([GM] and [GGMS]). The fact that this isomorphism comes
from two reductions of M is the philosophy of "dual pairs" (see [Mo] and

the references therein).

5. The GelTand-Cetlin action

On mTk we have so far defined the length functions I measuring the
distances between successive vertices. We now introduce d : mTk —> Rw,
5(P) (Ip(I)Up(I) + p(2)|, |Xw=i p(0|), the lengths of the diagonals
connecting the vertices to the origin. (Only m - 3 of these functions are new,
as d(p)\ — £(p)i d(p)m^i £(p)m, and d(p)m 0. Hereafter we write only
!/. dj and the p is to be understood.)
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As with £, the function d descends to continuous but only generically
smooth functions d on mfl>k

9 m/p+ and m/pk. It is smooth where no dj

vanishes, that is to say the polygon does not return to the origin prematurely.
We call such a polygon P prodigal and call (£(P).d{P)) a prodigal value.

The set of prodigal polygons is open dense in mV+ with complement of
codimension k.

For k 3, there is in [KM2] (see also [Kl], §2.1) introduced an action of
a torus Tm~3 on prodigal polygons; the ith circle acts by rotating the section

of the polygon formed by the first i edges about the ith diagonal. (When that

diagonal is length zero, there is no well-defined axis about which to rotate,
and indeed the action cannot be extended continuously over this subset.) This
action plainly preserves the level sets of the functions c/, but more is true:

THEOREM 5.1 (KM2). On the subspace of prodigal polygons of V\(pt)>
the function d is a moment map for these "bending flows".

One important consequence of this is that the torus action also preserves the

symplectic structure. It does not, seemingly, preserve the Riemannian metric

nor the complex structure (the codimension of the singular set is not even;
see also §6).

These functions £,d lifted to V2(Cm) have simple matrix-theoretic

interpretations. For (a, b) G V2(Cm), i 1.... ,m, introduce the truncated matrices

rows of (a,b). Then the 2x2 matrix

has the eigenvalues

2 £(|ayM*/)±* (y^ßaj\2 " lfe/12

J= 1 \ V=1

These are calculable from £ and d, since

e(<S*a,b)) ,\ai\2 + \bi\2,..,)

and
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/

</(<!><«/./>» • (-.IEM'.M--)
y=i

/ / \ 2 i

+4\
\| 7 2=1

So ]C/=i is the sum of the two eigenvalues of MfM?, whereas J/ is the

difference. (Note that ^ » di as promised; M*Mi's lesser eigenvalue is 0.)

This (2 x 2)-matrix M*M/ has the same nonzero eigenvalues as the i x i
matrix M/M*. The latter matrix is more relevant in that it is the upper left
i x i submatrix of the m x m matrix (a. b) (a, b)* introduced in section (3.11).

This family of Hamiltonians — the eigenvalues of the upper left submatrices

— has been studied already in [Th] and is called the classical Gel'fand-Cetlin

system (our main reference is [GS1]). The linear relations established above

between them and d, £ are summed up in the following

THEOREM 5.2. The bending flows on mV\{a) are the residual torus action

from the Gel'fand-Cetlin system on the Grassmannian G2(C'").

The GeFfand-Cetlin action on the flag manifold has always been rather

mysterious (at least to us); it is pleasant that in this case it has a natural

geometric interpretation.
The GeFfand-Cetlin functions {G/j7</ (the jth eigenvalue of the upper

left i x i submatrix) satisfy some linear inequalities that can be established

using the minimax description of eigenvalues [Fr, p. 149] :

eiJ — ei—1,7+1 — G\ /+i •

For the polygon space functions /, d most of these say 0 < 0 ; for each
i « 0, —j n — 1 the nontrivial inequalities are

i /+1 i i+l
0 < —dj + 22 lL < —dj+1 + 22 4 < di + 22 < di+1 + 22 ^ •

4—1 4=1 6=1 6=1

But these are transparent in our situation, as they are just the triangle
inequalities

EN2-N2)

(i)
^/+1 5? dj + di+1

di < £{+1 + di+i

di+1 G -|- d[
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(The first one, di < Yl[=] ^ > can proved inductively from the others

starting from do 0.)
In [GS1] it is left as an exercise to show that (1) are the only inequalities

satisfied ; equivalently, that every point in the convex polytope Tm C Rm x Rm

defined by them (and do dm 0 and ffi ^ 2) is realized by some
Hermitian matrix. We show this directly :

THEOREM 5.3. The image of mJ>k^2 under the map (l^d) is the whole

polytope rm.

Proof We construct the polygons directly, vertex by vertex — really
establishing that each space mVk(a, 6) is nonempty (and so its quotient by
SO(k) is as well). We must place each new vertex on the intersection of two
Sk~l's, one of radius di+1 from the origin, the other of radius £i+\ from the

previous vertex. The inequalities £i+\ < dt -f di+\ and di+ \ < £t+\ + dt rule
out one Sk~x containing the other; the third inequality di < +d/+i rules

out their being separated balls. So they intersect in an Sk~2, a point or the

whole Sk~l, anywhere on which we may place the new vertex.

(5.4) Remarks

1) While the map £ is equivariant with respect to the usual action of
Sm on Rm, the map d can only be made equivariant under the involution

[i (n — 0], and the polytope Tm is correspondingly less symmetric than

the hypersimplex Em.

2) That the image of (£} d) is the same when restricted to planar polygons
has the flavor of a more general theorem of Duistermaat [D] on restricting
moment maps to the fixed-point sets of antisymplectic involutions. In fact
Duistermaat's theorem does not apply directly, because the subset where d is

smooth (and a moment map) is noncompact; in any case we preferred to give
a polygon-theoretic proof.

3) When k 3 Theorem 5.1 guarantees that the bending torus acts

simply transitively on the fiber over an interior point of Fm, making this fiber

a torus U(l)m~3 (or 0(l)m-3 when k — 2). Over a prodigal boundary point
of Tm, the fiber is still a product of 0- or 1-spheres, but fewer of them.

4) Bending around other diagonals than the ones above can be done in the

same way, the moment map lifted to V2(Cm) being the difference of the two

eigenvalues of M*M for a corresponding submatrix M of (a,b) G V2(Cm).
For instance, we take
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for the diagonal 92.4 •= p(2) + p(3) + p(4). The bending flows around two

diagonals dp,q and dp>.q> commute if and only if the pairs {p.q} and {p'.q'}
intersect or are unlinked in R/mZ.

6. Toric manifold structures on mV\(a) for m — 4.5.6

In this section, we study examples of TTj_(a) C mVJ such that the m — 3

diagonal functions ri2.... -Am-i V]_(a) —» R never vanish. The whole space

V\{a) consists of prodigal polygons and, by §5, the bending flows give an

action of a big (i.e. half-dimensional) torus on VI(a). By Delzanris theorem

(see [De], or [Gu, §1]), we can construct from the moment polytope ÀQ

alone a toric manifold which is equivariantly symplectomorphic to the space
V:]_(a). This can be achieved also by [DJ,§ 1.5], though only up to equivariant

diffeomorphism. The latter also gives the real part, the planar polygon space
V2(a), as a 2'"-3 -sheeted branched cover of AQ. We sum up below some
results of these constructions without writing all the details.

Without explicit mention of the contrary, a is supposed to be generic.

Contrary to the previous sections, we do not require that the perimeter of
our polygons is 2. It was necessary to fix the perimeter in order to define
the map £ and the value 2 is the natural choice to deal with the map
O : V2(C"r) —> mVk. But mVk(a) makes sense for any a G R>0 and so do
the various moduli spaces mVk(a). etc. When ^ a,- 2, the polytope Aa is

a slice through the Geflfand-Cetlin moment polytope Tm of § 5 : for general
a it is a homothetic copy of this section.

(6.1) m 4 : The condition which guarantees that d2 never vanishes is

Gi 7^ ai or a3 ^ a4. The space of quadrilaterals 4V:i(a) is then a compact
toric manifold of dimension 2, therefore diffeomorphic to CP1. The moment
map d2 has image the interval Aa := 7) n I2 where

1\ ;= [|a] - q2|. ai + a2] and I2 := [|a4 - a3|. a4 4- a3].

The space AV2{a) is RP1. The quadrilateral spaces 4"P2(a)+ have long since
been classified (see for instance [Ha]). One has

1U Sl when Ix C h or h c I\
otherwise
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