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To prove Proposition 4.5, it is enough to establish that for all a € CP,‘.,
the tangent map Tuo : T,CP! — Tyn)S; satisfies

T,p(Jv) = JT,¢(w) and ©(Tad(w), Ta0(v)) = 4w(v,Jv).

By U,-equivariance, we can restrict ourselves to a = [/r.0]. The tangent
space T,CP! is identified with {0} x C and one can take v = (0. 1) and
Jv = (0,7). One has ¢(a) = (r,0.0),

T,6(v) = (0,2¢/7,0), Tad(Jv) = (0,0,2/7) = JT,0(v)
and Q(Tang(v),Taqzﬁ(JU)) =4, while w(v.Jv)=1. [

REMARKS

(4.6) The results of this section show that the spaces Pi(a) for generic
o are the symplectic leaves of the Poisson structure on the regular part of
mp3 | or PP given in (3.13) and (3.14).

(4.7) If one works in the pure quaternions /H, the complex structure J
on S? becomes

Joy=L" wer,s’=m).

v
g
The sphere S,z. is a co-adjoint orbit of U;(H) and the Hermitian form w is
the Kirillov—Kostant form (see [Gu, Theorem 1.1]).

(4.8) The isomorphism between the symplectic reductions of the Grass-
mannian G,(C™) and the product of CP!’s that underlies our results 3.9,
4.4 and the proof of 4.5 is a symplectic version of the Gel'fand-MacPherson
correspondence ([GM] and [GGMS]). The fact that this isomorphism comes
from two reductions of M 1s the philosophy of “dual pairs” (see [Mo] and
the references therein).

5. THE GEL'FAND-CETLIN ACTION

On ™F* we have so far defined the length functions £ measuring the

~

distances between successive vertices. We now introduce d : "FfF — R™,

d(p) = (|p(D)], [p(1) + p2)].. ... [Z;" 1,o(i)l) the lengths of the diagonals
connectmg the Vemces to the origin. (Only m — 3 of these functions are new,
as d(p)1 =i €(p)1, a’(p),,, | = é(p),,,, and a’(p)m = 0. Hereafter we write only

¢;.d; and the p is to be understood.)
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As with ¢ , the function d descends to continuous but only generically
smooth functions d on Pk, mPk and ™P*. It is smooth where no d;
vanishes, that is to say the polygon does not return to the origin prematurely.
We call such a polygon P prodigal and call (E(P),d(P)) a prodigal value.
The set of prodigal polygons is open dense in ’"Pf‘,r with complement of
codimension k.

For k = 3, there is in [KM2] (see also [KI], §2.1) introduced an action of
a torus 7™ on prodigal polygons; the ith circle acts by rotating the section
of the polygon formed by the first i edges about the ith diagonal. (When that
diagonal is length zero, there is no well-defined axis about which to rotate,
and indeed the action cannot be extended continuously over this subset.) This
action plainly preserves the level sets of the functions d, but more is true:

THEOREM 5.1 (KM2). On the subspace of prodigal polygons of 731(@),
the function d is a moment map for these “bending flows”. :

One important consequence of this is that the torus action also preserves the
symplectic structure. It does not, seemingly, preserve the Riemannian metric
nor the complex structure (the codimension of the singular set is not even;
see also §6).

These functions /,d lifted to V,(C™) have simple matrix-theoretic inter-

pretations. For (a,b) € V,(C™), i =1,...,m, introduce the truncated matrices
a; by

M; = : . |, the first i rows of (a,b). Then the 2 x 2 matrix
d; b,‘

) L el @b
j=1 \bjl

a;b;

has the eigenvalues

1 i [ 2
: (Z(lajlz IRE: (Z(\aﬂz — |ij2)> +4
j=1 j=1

\

0(D(a, b)) = £(..., ¢ai, b),...) = (.., |al + B,

I
E ajb;
j=1

These are calculable from ¢ and d, since

and
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d(®(a,b)) = |Z¢<aj,b>|

(Z(la;l2~?bjl2>> vaSapl )
j=1 j=1

So Z;Zl ¢; is the sum of the two eigenvalues of M;M;, whereas d; is the
difference. (Note that £, = d; as promised; M;M,’s lesser eigenvalue is 0.)

This (2 x 2)-matrix M;M; has the same nonzero eigenvalues as the 7 X
matrix M;M; . The latter matrix is more relevant in that it is the upper left
i X i submatrix of the m X m matrix (a, b) (a,b)* introduced in section (3.11).

This family of Hamiltonians — the eigenvalues of the upper left submatrices
— has been studied already in [Th] and is called the classical Gel’fand-Cetlin
system (our main reference is [GS1]). The linear relations established above
between them and d.¢ are summed up in the following

THEOREM 5.2. The bending flows on ’”731(04) are the residual torus action
from the Gel'fand-Cetlin system on the Grassmannian G,(C™).

The Gel’fand-Cetlin action on the flag manifold has always been rather
mysterious (at least to us); it is pleasant that in this case it has a natural
geometric interpretation.

The Gel'fand-Cetlin functions {e;;};<; (the jth eigenvalue of the upper
left i x i submatrix) satisfy some linear inequalities that can be established
using the minimax description of eigenvalues [Fr, p. 149]:

€ij S il jrl < €t
For the polygon space functions [,d most of these say 0 < 0; for each
i=0,...,n—1 the nontrivial inequalities are

i+1 i+1

0< d+Z€ < dl+1+22 <d+2€ <d,+1+Z€

But these are transparent in our situation, as they are just the triangle
inequalities !
b1 < di 4 dig
(1) di <Ly +dig
dit1 < Liyy + d
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(The first one, d; < Zi:l ¢,, can be proved inductively from the others
starting from dp = 0.)

In [GS1] 1t is left as an exercise to show that (1) are the only inequalities
satisfied ; equivalently, that every point in the convex polytope I, C R” x R”
defined by them (and dyp = d,, = 0 and ) ,¢; = 2) is realized by some
Hermitian matrix. We show this directly :

THEOREM 5.3. The image of ™P*2? under the map (¢,d) is the whole
polytope T',,.

Proof.  We construct the polygons directly, vertex by vertex — really
establishing that each space ’”75"(@,6) is nonempty (and so its quotient by
SO(k) is as well). We must place each new vertex on the intersection of two
Sk=1°s one of radius diy1 from the origin, the other of radius ¢;;, from the
previous vertex. The inequalities ¢, < d; +d;11 and diy1 < 4y + d; rule
out one S¢~! containing the other; the third inequality d; < £;1 +d;q; rules
out their being separated balls. So they intersect in an S¥=2, a point or the
whole $*~!, anywhere on which we may place the new vertex. [

(5.4) REMARKS

1) While the map ¢ is equivariant with respect to the usual action of
Sn on R™, the map d can only be made equivariant under the involution
[i <= (n —7)], and the polytope I',, is correspondingly less symmetric than

.

the hypersimplex =,,.

2) That the image of (¢,d) is the same when restricted to planar polygons
has the flavor of a more general theorem of Duistermaat [D] on restricting
moment maps to the fixed-point sets of antisymplectic involutions. In fact
Duistermaat’s theorem does not apply directly, because the subset where d is
smooth (and a moment map) is noncompact; in any case we preferred to give
a polygon-theoretic proof.

3) When k£ = 3 Theorem 5.1 guarantees that the bending torus acts
simply transitively on the fiber over an interior point of I',,, making this fiber
a torus U(1)"3 (or O(1)"=* when k = 2). Over a prodigal boundary point
of T',,, the fiber is still a product of 0- or 1-spheres, but fewer of them.

4) Bending around other diagonals than the ones above can be done in the
same way, the moment map lifted to V,(C™) being the difference of the two
eigenvalues of M*M for a corresponding submatrix M of (a,b) € V,(C™).
For instance, we take
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a')b

2 2
M = as b3
aj b4

for the diagonal 8,4 := p(2) + p(3) + p(4). The bending flows around two
diagonals 8, , and 8y, commute if and only if the pairs {p.g} and {'.q'}
intersect or are unlinked in R/mZ.

6. TORIC MANIFOLD STRUCTURES ON ’"Pi (ov) FOR m =4.5.6

In this section, we study examples of P3(a) C mP3 such that the m — 3
diagonal functions ds.....dyu—> : Pi(a) —— R never vanish. The whole space
Pi(a) consists of prodigal polygons and, by §5. the bending flows give an
action of a big (i.e. half-dimensional) torus on Pi(a). By Delzant’s theorem
(see [De], or [Gu, §1]), we can construct from the moment polytope A,
alone a toric manifold which is equivariantly symplectomorphic to the space
Pi(az). This can be achieved also by [DJ,§ 1.5]. though only up to equivariant
diffeomorphism. The latter also gives the real part. the planar polygon space
P>(a), as a 2" 3-sheeted branched cover of A,. We sum up below some
results of these constructions without writing all the details.

Without explicit mention of the confrary, a is supposed to be generic.
Contrary to the previous sections, we do not require that the perimeter of
our polygons 1s 2. It was necessary to fix the perimeter in order to define
the map ( and the value 2 is the natural choice to deal with the map
o :V,(C") — mpk But ™ FX(o) makes sense for any a € R%, and so do
the various moduli spaces "P¥(a), etc. When > a; = 2, the poﬁytope Ay 1S
a slice through the Gel'fand-Cetlin moment polytope T, of §5: for general
a it is a homothetic copy of this section.

(6.1) m =4: The condition which guarantees that d» never vanishes is
Q) # ay or a3 # ay. The space of quadrilaterals *P3 (a) is then a compact
toric manifold of dimension 2, therefore diffeomorphic to CP'. The moment
map d» has image the interval A, := I; NI, where

]1 == ['Ql—az!.al+a2] and [2 = [1&4-&3].Q4+Q3]~

{

The space *P*(a) is RP'. The quadrilateral spaces *P>(a). have long since
been classified (see for instance [Ha]). One has

1 )
D0y, { S'usS' whenl, CLorl, C I |

' otherwise
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