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ON THE COHOMOLOGY OF COMPACT LIE GROUPS

by Mark REEDER

ABSTRACT. We give a new computation of the cohomology of a Lie group that
some mathematicians may find to be shorter and more elementary than previous
approaches. The main new ingredient is a result of L. Solomon on differential forms
invariant under a finite reflection group. The cohomology is shown to have a bi-grading
which has several interpretations.

1. INTRODUCTION

Let G be a compact connected Lie group, and let 7 be a maximal
torus in G. We denote the corresponding Lie algebras by g and t. Let W be
the Weyl group of Tin G. Then W acts on t as a group generated by reflections
about the kernels of the roots of t in ¢ ® C. It has been known since the first
half of this century that the cohomology ring H(G), with real coefficients, is
an exterior algebra with generators in degrees 2m; + 1, ...,2m,; + 1, where
m;+1,...,m;+ 1 are the degrees of homogeneous generators of the ring
of W-invariant polynomial functions on t. In particular, the Poincaré
polynomial of G is (1 + ¢2m1+1)--- (1 4+ ¢?2™+1), and G has the cohomology
of a product of odd-dimensional spheres.

Despite its age and familiarity, it is not easy to find a proof of this theorem
in the literature. There are many beginnings and sketches in the textbooks, but
the difficult part, namely the remarkable connection between degrees of
invariant polynomials and Betti numbers, usually goes unproven. One reason
is that the standard proofs (for example, [Bo2], [Ch], [L]) require substantial
algebraic preliminaries on Hopf algebras, spectral sequences, and differential
algebras. (See [Bol] and [Sam] for historical surveys.)

We offer here a new but less sophisticated computation of the cohomology
of a Lie group, avoiding the above algebraic techniques. Instead we use
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182 M. REEDER

standard Lie theory and more invariant theory than is customary. We have
tried to give a fairly complete treatment, in which it is seen that only a few
ideas are used repeatedly. The most serious omission of proof is that of
Chevalley’s theorem on invariant polynomials, but that has many accessible
references. Hopefully, enough background has been included to make the
whole story coherent to someone with a basic knowledge of Lie groups and
differential topology.

A sketch of our computation of H(G) goes as follows. Consider the
manifold M consisting of pairs (g, T’), where g € G and T’ is a maximal torus
in G which contains g. There is a natural map y: M — G, known already
to Weyl, given by conjugation. We make the apparently new observation
that y induces an isomorphism of real cohomology rings H(M) = H(G).
This uses only standard facts gleaned from the differential of y. One could
also invoke the spectral sequence of the fibration G — G/T. This spectral
sequence was shown by Leray to degenerate at E3. It in fact has a spectral
subsequence (the W-invariants) which already degenerates at E? and still
computes H(G) (see (6.4) below).

We still have to compute the cohomology of M. It is easy to see that
HWM) =[H(G/T)Q H(T)]". The ring H(T) is naturally isomorphic to the
exterior algebra of t*, and H(G/T) is isomorphic to the space 77 of
W-harmonic polynomials on t, according to a famous theorem of Borel. For
completeness, we give a proof of this in the same elementary, if less efficient
spirit. As with all proofs, the essential thing is to show that the odd
cohomology of G/ T vanishes. We do this with a direct generalization of the
Morse-theoretic computation of the cohomology of the two-sphere.

So now we are down to invariant theory, and must compute
[77 @ At*]". This follows immediately from Solomon’s determination of
the W-invariant differential forms on t with polynomial coefficients, which in
turn depends on Chevalley’s well-known description of W-invariant
polynomials. This gives us the desired connection between degrees of
W-invariants and Betti numbers of G. Solomon’s result also leads to pretty
formulas for the multiplicities of the W-modules A?t* in spaces of harmonic
polynomials (see (3.8)), as well as a generalization of a classical result on the
Jacobian of the basic invariants (see (3.9)).

The paper is organized as follows: First the structure of G and its adjoint
representation is recalled, then comes invariant theory, followed by the proof
of Borel’s theorem, finishing with the computation of H(G) and some remarks
on its natural bigrading. Throughout, cohomology has real coefficients.
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2. BASIC MATERIAL
For more details in this section see [A], for example.

(2.1) Recall that G is a compact connected Lie group with maximal torus 7,
having respective Lie algebras ¢ and t. The Weyl group is the finite group
W = N/T, where N is the normalizer in G of 7. Since G is compact, there
is an Ad(G)-invariant inner product ¢ , » on g, obtained by averaging any
inner product over G. Let m be the orthogonal complement of t in g with
respect to this inner product, so

g=1t®m (orthogonal) .
The infinitesimal version of invariance of the inner product is the identity
(X, Y], Z) + (Y, [X,Z]) =0,
for X, Y,Z € g.

(2.2) The exponential map exp:g — G is surjective, since G is compact.
This is one of the deeper theorems in a first course on Lie groups. We actually
only need this surjectivity for exp:t — 7, which is clear.

The Lie algebra t is abelian (the bracket is zero); in fact t is a maximal
abelian subalgebra of g. In particular, no nonzero vector in m has zero bracket
with all of t. Likewise, Ad(7T) has no nonzero invariant vectors in m.

Now a torus is a topologically cyclic group. That means there exists a
generic element ty, € T whose powers form a dense subgroup of 7. It follows
that the single operator Ad(¢y) can have no invariants in m. Likewise in the
group G, it can be shown that a maximal torus is its own centralizer, so
the centralizer in G of 7, is just 7. There is a similar notion in the Lie
algebra. A regular element of t is one whose Ad(G)-centralizer is exactly
Ad(T). To find one, take any H, € t such that exp H, = ¢,.

(2.3) The group G acts on ¢ via Ad, and this induces an action of W
ont. No element of W acts trivially, and the image of Win GL(t) is generated
by reflections about certain hyperplanes defined as follows.

Since the nontrivial irreducible representations of a torus are given
by two dimensional rotations, we have an orthogonal decomposition
m=m @ - ®m,, where each m, is two dimensional and there is a
finite set of nonzero linear functionals A+ = {ay,...,a,} Ct*, called
positive roots such that for H e t, the eigenvalues of Adexp H on m; are
exp(+)/—1a;(H)). We determine the signs as follows. Fix a regular
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element H, € t. We may and shall choose the positive roots so that they take
strictly positive values on H,. The action of W on t is generated by
reflections about the kernels of the positive roots.

Since each m; is also preserved by ad(t), we can choose an orthonormal
basis {X;, X,.;} of m; such that, for H € t, the matrix of ad(H) |,, with

respect to this basis is
0 o(H)
—o(H) 0 )

Note that the ad-invariance of the inner product ( , ) implies, for all
I1<igv,alll1 <j<2vand all H €t that

(H, [X;, X;1) = ([H, X;], X;) = —o;(H)(Xirv, X;) .

By orthonormality, this last pairing can only be nontrivial if j =i + v.
Hence if j#i+ v, we have [X;, X;] € m. The same thing happens if
i>vandj#1i-—v.

On the other hand, for 1<i<v, set H;=[X;,X,+:;]. This is
Ad(T)-invariant, so H; € t, and ad(H;)m; C m,;. It follows that the span
of X;,X,;,v, H;is a Lie subalgebra ¢; of g. It is always isomorphic to du(2).

3. INVARIANT THEORY

All proofs missing from this section may be found in the textbook [H],
the expository article [F], or [BK].

(3.1) Let

/

F=@ ¥ and A= @D (=dimt)
p=0

g=0

be the symmetric and exterior algebras on t*, respectively. The adjoint action
of W on t induces representations of W on & and A by degree-preserving
algebra automorphisms. For example, the action of W on A’is multiplication

by the sign character

e:W—-{+£1} given by ¢&(w)=detAd(w);.

Note that €(w) is the parity of the number of reflections needed to express
Ad(w);.
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We are interested in W-invariant polynomials, and more generally,
W-invariant differential forms with polynomial coefficients. For the unitary
group U(n), the ring of invariants &% is generated by the elementary
symmetric polynomials s, ..., s, in variables xi, ..., X, defined as

Sg(X1s ey Xp) = Y Xi ottt Xy
1<ip< - <ig<n
The elementary symmetric polynomials are algebraically independent, and
their number equals the dimension n of a maximal torus of U(n). In general,
we have

(3.2) THEOREM (Chevalley). The ring % has algebraically inde-
pendent homogeneous generators F,,...,F;, hence is a polynomial ring

gW: R[Fl, ...,F/] .

We number these generators so that degF; < degF, < -+ < degF.
(Note to experts: Since we are not assuming G to be semisimple, some of
the Fs could have degree one.) The exponents m;, <m, < - < my
of W acting on t are defined by the relations m; + 1 = deg F;. It is known
that my + -+ + m;=v,and (1 + m;) --- (1 +m;) = | W|.

Every compact connected Lie group is, up to finite covering, the product
of a central torus with a direct product of classical groups SU(n), SO (n),

Sp(n), and exceptional groups G,, F,, E¢, E;, Eg. For these groups the m,’s
are given as follows:

SU(n): 1,2,...,n — 1. SOoQ2n): 1,3,...,2n—-3,n— 1.
SO2n +1) and Sp(n): 1,3,...,2n — 1.
Gy: 1,5. F,: 1,5,7,11.

E¢: 1,4,5,7,8, 11.
E,;: 1,5,7,9,11, 13, 17.
Eg: 1,7,11,13,17, 19, 23, 29.

These numbers are easy to verify for the classical groups and G, (whose
maximal torus T is that of SU(3) with Weyl group S extended by the inverse
map on 7T'), using elementary symmetric polynomials as above. Computing the
exponents for the other exceptional groups is more difficult. See [C].

(3.3) The W-module structure of the whole polynomial ring & is given as
follows. Let & be the ring of constant coefficient differential operators
on /. We can think of & as the symmetric algebra S(t), where H et
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corresponds to the derivation of & extending the functional on t* given by
evaluation at H. Then W acts naturally on & and one defines the ‘“harmonic
polynomials” in % to be those annihilated by the W-invariant differential
operators:

K ={fe S gVf=0}.

Let 277 = 2 n 7. Then 27 = @, P, since a differential operator
is W-invariant only if each of its homogeneous components is so. The action
of Won & leaves &7 invariant.

Let .7 be the ideal in & generated by the elements of &% of positive
degree. It is known (see [H, p. 360] that &= 27 @® .7, and the multiplication
map is a linear isomorphism Q@ &% = &. The former implies that
&/ F and 2% are isomorphic W-modules. They are in fact isomorphic to
the regular representation of W, as we shall see in (5.4). The isomorphism
o Q FW = & implies the identity

/
Y dimazZrer = ] L+ e+ 2+ - +17m),
i=1

p=0
which in turn shows that dim 2#°vV =1, and 277 = 0 for p > v.

(3.4) Let V be any irreducible W-module. Suppose V is a constituent
of &%, and not a constituent of &7¢, for any ¢ < b. We call b the birthday
of V. Then the V-sotypic component of % must consist of harmonic
polynomials, for otherwise, a W-invariant differential operator of positive
degree would intertwine V with a space of polynomials of lower degree.

For example, the primordial harmonic polynomial is

M= [[ ae v,
ceEAT
where we recall that A* is the set of positive roots. For U(n), Il is the
van der Monde determinant [, _ iXi— X, which transforms under the
symmetric group S, by the sign character. In general, I transforms by the
sign character € of W, and any other polynomial transforming by € must vanish
on all root hyperplanes, hence be divisible by Il. Therefore IT is harmonic,
v is the birthday of € and (1.4) shows that 577V is spanned by II.

We say that IT is primordial because 2#° is spanned by the partial
derivatives of IT (see [S]). This turns out to be the algebraic analogue of
Poincaré duality for G/ T.

As we have seen, the sign character is also afforded by A’. In general, if
g is simple then each exterior power A¢?is an irreducible W-module. We shall
determine the birthday of each A¢ shortly.
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(3.5) Now consider the algebra & ® A of differential forms on t with
polynomial coefficients. Let Fy, ..., F; be homogeneous generators of LW as
in (3.2). Extending that result, Solomon [Sol] has described the W-invariants
in & ® A. Because it seems not so well known but is important here, we give
a proof, taken from [H].

(3.6) THEOREM (Solomon). The space (¥ ® A)Y of W-invariants
in QN isa free Y-module with basis

{dF,l/\/\dqu1<11< <lq<1}

Proof. It is a general fact about polynomials that the algebraic
independence of F, ..., F;is equivalent to the form dF A - -+ AdF, not being
identically zero. Let x;, ..., x; be a basis of t*. Then

dF A ANdF, = Jdx; -+ dx,,

where the Jacobian J is a polynomial of degree m, + --- + m,; = v. The
left side is W-invariant and dx; A - -- Adx; affords the sign character €.
Hence J must also afford € and, because of its degree, J must be a nonzero
multiple of the primordial harmonic polynomial IT. Thus

dFiAn - ANdF, = clldx A - AdXxy,

for some nonzero real number c.

For a sequence [ =i, < -+ <i,, let I' be the increasing sequence
of all integers in {1,...,/} —{iy,...,ig}. Set dF;=dFin- AdF;,
for any sequence I. Let k be the quotient field of &. If f; € k are such
that Y, f;dF; = 0 then multiplying by dF;  kills all terms but I, leaving
+ cf;Ildx, ---dx; =0, so f;=0. Counting dimensions, we find that
the dF; are a k-basis of £k ® A, and are in particular linearly independent
over ZW. Now suppose ® € ¥ &® A is W-invariant. We can express
® = ) ,g/dF; for some g; € k. Multiplying by dF; again, we have

(D/\dF]f = = Cg]HdX1 dX[ € [y® A]W :
This forces g; to be not only W-invariant, but also polynomial. []
For me Y@ A, let o' € 7.7 ® A be obtained by reducing the
coefficients of @ modulo .#. This induces an exact sequence
0 (S QMY > (T RN (T RNV -0 .

It follows immediately from Solomon’s theorem that {dF] A - AdF] :
. . - q
1 << <ig< !} spans (7.7 @ A)" (over R). This is in fact a
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basis, since 7.7 affords the regular representation of W, so
dim (77 ® A)" = 2!. We therefore have the following

(3.7) COROLLARY. (/7 ® A)" is an exterior algebra with
generators

dF e (/. 7)m @ AW, for 1<i<I.

We will see later that this exterior algebra is, with degrees in /.7 doubled,
the cohomology ring of the compact Lie group G. As W-representations,
we have &/ = 27 and the corollary gives the following

(3.8) MULTIPLICITY FORMULA.
Y dim Homy (A9, 27" )u" = s,(u™, ..., u™) ,
n=20

where s, is the elementary symmetric polynomial in [-variables, and
the m; are the exponents of W.

In particular, the birthday of A7 is m; + -+ + m,, if g is simple.

(3.9) We close this section with a digression. Suppose g is simple, so all A9
are irreducible W-modules. We can actually witness the birth of A¢ in
¢ using the differentials dF;, as follows. Choose a basis x;, ..., x; of t*,
and consider a g-form

W = E fil,...,iquil/\"'/\dxiq e YR A9

The linear span of the coefficient polynomials f; . . 1s independent of the
choice of basis {x;}. Moreover, if o is W-invariant and nonzero, then its
coefficients span a W-invariant subspace of % which is isomorphic to A¢
as a W-module, since the latter is irreducible and self-contragredient.

For example, we have seen that

dF\A -+ AdF; = clldx, A -+ Adx, ,

where ¢ is a nonzero scalar, and IT is the primordial harmonic polynomial,
affording the sign character of W. We have a generalization of this for
all A9,

(3.10) PROPOSITION.  For 1<qg<, the coefficients of
dF\n -+ AdF, are harmonic polynomials. They span an irreducible
W-submodule of 27 ™1+~ +™mq  isomorphic to AA1.
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Proof. The coefficients of dFiA---AdF,e (8™t " Q AW
span a W-invariant subspace of S”1* " * ™4 isomorphic to A?. As in (3.4),
these coefficients are harmonic because m; + --- + m, is the birthday
of A4, by the multiplicity formula (3.8). L]

4. INVARIANT DIFFERENTIAL FORMS

The ideas in this section go back to E. Cartan and de Rham. For a thorough
exposition, see [C-E].

(4.1) Suppose a compact Lie group G acts transitively on a manifold M.
Let 1, be the diffeomorphism of M corresponding to g € G. A differential
p-form w € Q7(M) is G-invariant if 1¥® = ®. Such a form is determined
by its value at any one point of M. One shows by averaging that every
de Rham cohomology class on M is represented by a G-invariant form, and
that the subcomplex of invariant forms is preserved by the exterior derivative.

Identify M = G/K where K is the stabilizer of a point 0 € M. We have
an orthogonal decomposition g = r @ n, where r is the Lie algebra of K.
Moreover this decomposition is preserved by Ad(K). For example if G acts
on itself by left multiplication then K = 1 and n = ¢. For another example
take M = G/T, so K = Tand n = m. In general, n is naturally identified with
the tangent space 7,(M), so an invariant form ® is determined by the
skew-symmetric multilinear map

W=0y,:nX "+ Xn—>R.

That is, o € A?n*. The invariance of ® under K implies the Ad(K)-
invariance of . Conversely, any element ® € (A?n*)X determines a
G-invariant form ® on M by the formula

d)g-o((d’tg)oXla cery (dTg)oXp) = (D(XI, -'-’Xp) s

for X|, ..., X, e nand g € G. Thus we may identify the G-invariant p-forms
on M with the space (A?n*)X. In this view, the exterior derivative becomes
the map &: (A?n*)X - (AP+1n*)K given by
1 o A A
8@ (Xo,...,X,) = — Y D o(Xn XX, e X Xy X))
1<j
Here " means the term is omitted, and [X;, X;], is the projection of [X:, X;]

into n along r. The complex {(A”n*)X,8} computes the de Rham
cohomology of M.
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(4.2) Assume that K is connected. Since any homomorphism from K to the
multiplicative real numbers must be trivial, the determinant is a nonzero
element of the one dimensional space (A" n*)X, where n = dim M. It follows
that M is orientable, and any G-invariant n-form on M will have nonzero
integral over M as soon as it does not vanish at one point.

(4.3) In the case M = G we have the additional symmetry of left and right
multiplication by G X G, and every cohomology class contains a bi-invariant
representive. The value at e of a bi-invariant form is Ad(G) invariant. Taking
the derivative of the condition for ® € A”g¢* to be Ad(G)-invariant, we find
(product rule) that o ([X, X1, X2, ..., Xp) + - + o(Xy, .., [X, X,]) =0
for all X, X,,...,X, € g. It is then not hard to show that this condition
implies that dw = 0. Hence all bi-invariant forms are closed. Since &
commutes with Ad, it follows that the de Rham cohomology of G is computed
by the complex (Ag*)%, with zero differential. That is, H(G) = (Ag*)°, as
graded rings.

5. THE COHOMOLOGY OF FLAG MANIFOLDS

The Bruhat Decomposition is a cell decomposition of the flag manifold
G/ T into even dimensional cells indexed by elements of the Weyl group W.
It generalizes the decomposition of the two-sphere (flag manifold of SU(2))
into a point and an open disk. The existence of such a decomposition implies
that there are no boundary maps in cellular homology, and the cohomology
of H(G/T) is nonzero only in even degrees.

It is customary to explain the The Bruhat decomposition in terms of
complex groups. For example the flag manifold for U(n) is in fact a
homogeneous space for GL,(C), and the cells can be described as the orbits
of certain subgroups of the group of upper triangular complex matrices, which
do not live in U(n). We shall, however, describe the cell decomposition of G/ T
purely in terms of the compact group G, using Morse theory. It was Bott, later
with Samelson, who first applied Morse theory to the loop space of G from
which, combined with results of Borel and Leray, they deduced results on the
topology of G and G/T. See [BT] for a brief introduction to Morse theory.

(5.1) We need to find a “Morse function” f on G/T. This is a smooth real
valued function whose Hessian (matrix of second partial derivatives taken in
local coordinates) at each critical point has nonzero determinant. How shall
we find one? For the unit sphere in R? centered at (0, 0,0), we can take
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f(x,y,2) = z, and the critical points are the north and south poles, where
0
-1
gradient of f emanating from the south pole form a 2-cell, and the north
pole is a zero-cell. We can also write f using the dot product on R3
as f(p) = p - n, where n is the position vector of the north pole. Viewing R3
as the Lie algebra 8u(2), this tells us what to do in general.

As analogue of the north pole, we take H, € t to be the regular element
defining the positive roots, as in (2.3). Since the Ad(G)-centralizer of H,
is exactly 7, we may view G/T C g as the Ad(G)-orbit of H, (analogous
to S2 C R?), and we define a function f:G/T — R by

f(&T) = (Ad(g)H,, Hy) .

For X € g, let X be the vector field on G/ T given, for a smooth function ¢
on G/T, by

- 1 0 ,
the Hessian is ( 1 ) and (O l) , respectively. The flow lines of the
0

_ d
Xo(gT) = gd)((exst)gT) |0 .

Then a short computation, using the ad-invariance of the inner product,
shows that

Xf(gT) = (Ad(g)H,, [H,, X]) .

Since the centralizer of H, in ¢ is exactly t, the image of ad(H,) is all
of m. So gT is a critical point of f if and only if (Ad(G)H,,m) = 0,
forcing Ad(g) Hy € t. It then follows that Ad(g)H, = Ad(w)H, for some
w e W. So the critical points of f are the w7, for w e W.

Let X, X3, ..., X,, be the orthonormal basis of m from (2.3). For each
w € W, the differential of the projection n: G — G/T maps Ad(w)m = m
isomorphically onto T,7(G/T), so we can use the X,’s to compute the
Hessian of f at each point wT. Let h;;(w) be the ij entry in the Hessian
matrix. Another short computation gives |

hiy(w) = X, X, f(WT) = ([X;, Ad(w) Hol, [Ho, X1 .
Recalling the bracket relations in (2.3), we find that

hii(w) = — 0li(z‘ld(W)Ho)Oli(Ho) ,

and h;;(w) = 0 if i # j. The regularity of H, implies that of Ad(w)H,,
so the Hessian is nonsingular. It follows that the index of the critical
point wT, by definition the number of negative eigenvalues of the Hessian,
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i1s twice the number m(w) of positive roots o such that w-'a is again
positive. Now by the main theorem of Morse theory, the Poincaré polynomial
of G/Tis } . pu?"™ . In particular, H°4(G/T) = 0 and dim H**"(G/T)
= dimH(G/T) =y (G/T) = | W|.

(5.2) The Schubert cell X,, in the Bruhat decomposition is spanned by those
flow lines of the gradient of f which emanate from w7. The dimension of this
cell then equals twice the number of positive eigenvalues of the Hessian
at w7, which is the number of positive roots made negative by w.

(5.3) Recalling that W acts on G/ T, we use Leray’s argument to determine
the structure of the W-module H(G/T), ignoring the grading for now. The
element w € W acts by w - (gT) = gw~'T of Won G/T. Since there is no
cohomology in odd degrees, the Lefschetz number of w equals its trace
on H(G/T). If w # 1 there are no fixed points so the Lefschetz number is
zero. If w = 1 we are computing the Euler characteristic which we now know
is| W|. Hence the trace of any w € W acting on H(G/ T) is that of the regular
representation, so H(G/T) = R[W] (the group ring of W) as W-modules.

The theorem of Borel is a refinement of this, and describes the W-module
structure of H(G/T) in each degree. Recall the graded ring 2 of polynomial
functions on t and its ideal .# generated by the W-invariant polynomials of
positive degree. Our object is to prove the following

(5.4) THEOREM (Borel). There is a degree-doubling W-equivariant ring

isomorphism
c: /7 > H(G/T) .

Consequently, 2, = H(G/T), where 2y is 27 with the grading
degrees doubled.

Proof. We will describe the cohomology ring of G/T in terms
of G-invariant differential forms. For each A € t*, extended to a functional
on all of g by making it zero on m, define an Ad(T)-invariant two-form w,,
on m by

0, (X, Y) =A(X, Y]) .

As in (4.1), this corresponds to a left-invariant form w, on G/T.
Though it is not needed here, one can show that if A is the differential of
a character y,: 7 — S, then 4—17;(% represents the first Chern class of the
corresponding complex line bundle G X + C, where T acts on C via 7y, .
Returning to the proof, note that for w € W, acting on t* by wi(H)
= A(Ad(w)~'H), and on the space of differential forms Q(G/T) via its

action on G/T, we have w*w, = w,,. Moreover, the Jacobi identity says
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that 8w, = 0, and we let c(X) = [@,] € H2(G/T) be the cohomology class
of @, . This extends to a degree-doubling ring homomorphism

c: > H(G/T)

which also preserves the W-action on both sides. Since H(G/ T') is the regular
representation of W, its W-invariants are one-dimensional and therefore can
occur only in H°(G/T). By the W-equivariance, it follows that the kernel
of ¢ contains the ideal .# € & generated by W-invariant polynomials of
positive degree. Borel’s theorem asserts that .# is exactly the kernel of c.

Since & = 77 @® £ (see (3.4)), we shall prove the theorem by showing
that the restriction of ¢ to 77 is injective. We start in the top dimension, where
our task is to show that c(IT) (recall from (3.5) that IT is the primordial
harmonic polynomial) is nonzero in H?Y(G/T). One way is to use the Chern
class interpretation to show that ¢ (IT) is a nonzero multiple of the Euler class
of G/ T, whose integral over G/ Tis x(G/T) = | W| # 0. However, we shall
be more pedestrian about it, and evaluate ¢(IT) on a basis on m (see (4.2)).

Recall that for each positive root a;, we have elements X;, X;,, in m,
with bracket relations [X;, X;,,] =H;et,[X;,X;]em if j#i+ v.
The set {X;:1<i<2v} is a basis of m. Write ®; for ®,,, so ¢(I)
= [0, A" A®,]. We compute

WA A('OV(XlaX1+V'-~aXV9X2V)

1
= Z sgn(c)m, (Xs1)s Xoa+v) " 0y (Xow) s Xs2v)
2v)! ses,,
1
= E Sgn(c)al([X0(1)9X0(1+v)]) av([Xc(v)a Xc(Zv)]) .
2Vv)! ses,,

Now a; ([Xs¢y, Xoi+w]) = 0 unless [Xo0), Xoisv] €1, so the ot term is
nonzero only if ¢ permutes the pairs ©n; = {{,7 + v} and possibly switches
some of the members of each pair. Moreover, sgn (o) equals minus one to the
number of switches, so we get

QA AOVX, Xy, X, XDy)

2v
= Y GESV o ([XG(I)’XV+0(1)]) oy (X sy s Xviosw])
2v
N 2v)! cg:s 01 (Hom) - 0y (How)
2v
61 “ e avn ,

T 2!
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where, as in (3.3), 9; is the derivation of & extending the functional
A= A(H;). We have a perfect pairing

9 ® ¥R

given by (D, f) = (Df)(0). Since the pairing is perfect, something in
degree v must pair nontrivially with IT. Since an irreducible W-module can
only pair nontrivially with its dual, and the self-dual character € occurs with
multiplicity one in &'V, afforded by 9, - -+ d,, we must have 8, --- 8,I1 # 0,
so c(IT) # 0.

Observe that 0, --- 0, is analogous to the fundamental class of G/ T,
and the pairing is essentially that between homology and cohomology. We
further remark that in fact all irreducible representations of W are defined over
the rational numbers, hence they are all self dual. This is a consequence of
Springer’s cohomological construction of W-modules [Sp].

Returning again to our task, we now inductively assume that
c: #k—> H?*(G/T) is injective for Kk <v, and let V = 27%-1 n kerc.
Note that V is preserved by W since ¢ is W-equivariant. The sign character
does not occur in k-1, so there is a positive root a whose corresponding
reflection s, does not act by — 7 on V. Decompose V' = V, @ V_ according
to the eigenspaces of s,. If V# 0 then V., # 0, so take f e V,. Now
c(of) =c(a)c(f) =0, and af is in degree k, so we must have af € . by
the induction hypothesis. Let A, ..., h|w| be a basis of 77 with Ay, ..., ki,
sq.-skew and the rest s, invariant. By Chevalley’s theorem (3.2), we can
write af = Y h;0; with o; W-invariant of positive degree. Since af is
s.-skew, the sum only goes up to r. Now for i < r, the polynomial /; must
vanish on ker o, hence can be written A; = ah; for some 4, € &. But then
f= E:=1hf0i € 7. Since f is supposed to be harmonic, we must have
f = 0. Hence c is injective on 27, and the proof of Borel’s theorem
is complete. [

6. THE COHOMOLOGY OF A LIE GROUP

We now have all the ingredients for our proof. Consider the map
v:G/T x T— G given by y(gT,t) = gtg—'. The Weyl group W acts
on 7 by conjugation and on G/ T by w - gT = gn-'T, where w = nT. Hence
W acts on H(G/TxXxT)=H(G/T)® H(T). Since y(gn-'T, wtw~1)
=y (gT, t), it follows that the induced map y* on cohomology maps H(G)
to [H(G/T) ® H(T)]". Though we prefer to have it in this form, the latter
group could be thought of as the cohomology of the quotient of G/7 X T
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by the action of W, and this quotient has a natural interpretation. As in the
introduction, let M be the set of pairs (g, T') where T’ is a maximal torus
in G containing g € G. The map G/T X w T — M sending (g7, )ymod (W)
to (gtg~!,gTg 1) is a diffeomorphism.

PROPOSITION (6.1). The map induced by \y on cohomology is an
isomorphism of graded rings

y*: H(G) =~ [H(G/T) ® H(D]" .

Proof. We compute the derivative (dy)r,»n at a point (g7, ¢)
€ G/T x T. For each point g7 € G/ T, we identify m with the tangent space
T,7(G/T) by letting X € m correspond to the initial tangent vector X,r of
the path s— g(expsX) T in G/T. Similarly, an element X € g (resp. H € t)
corresponds to a tangent vector X, € T,(G) (resp. H, € T,(T), for t € T).

Then

d
(AW er, (X1, 0) = — g(expsX)t(exp —sX)g 's=o0

d
= Zz—gtg*1 [exp sAd (gt~ 1) X] [exp — sAd(g) X1 |s=o
S

=t;yg4m+&wguﬂﬂrw—DX+Oth=o
S

= [Ad(g) (Ad (1= 1)) X g1 -
Similarly, we find, for H € t, that

(dV)r,:(0, H;) = [Ad(g)H]gtg—z .

Hence, under the identifications, (dy) 7,1 is the map
(Ad(t) - Dy @Il m@®tomDt=g.

Here the subscript m means we view Ad(¢~') — I as a map from m to
itself. Now G being compact and connected, we must have det Ad(¢) = 1, so

(Actually, m is always even-dimensional as we have seen, so there is no need
to reverse the subtraction).

We compute the degree of y by finding a regular value. Let 7, be a generic
element in 7, as in (2.3). Consider y ~!(¢)) = {(gT, t): gtg~! = to}. It turns
out that any two elements of 7 conjugate in G must be conjugate by an element
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of W. (In U(n), two diagonal matrices with the same set of eigenvalues must
be conjugate by a permutation matrix.) It follows easily then that

v l(t) = {(wT, wtgw=1):we W}.

We next show that y preserves orientation at each point in y ~!(%).
The eigenvalues of Ad(f,) in m are complex conjugate pairs z, z,
where |z|=1,z# 1. Hence |1-z]||1-2z|=2(0~-Re(z))>0, so
det (I — Ad(ty)), > O.

At this point we know the degree of y is degy = | W| # 0. By Poincaré
duality, any smooth map between compact manifolds of the same dimension
is injective on cohomology as soon as it has nonzero degree. Hence
v*: H(G) = [H(G/T) x H(T)]" is injective. We finish the proof of (6.1)
by showing that both sides have the same dimension.

For this we use, three times, the following basic principle. Let K be a
compact group (here K will be G, T or W). Let dk be the left invariant
Haar measure on K with total mass one. Let V' be a finite dimensional real
vector space, and p:K — GL(V) a continuous group homomorphism.
Then the space VX of vectors fixed by all p(k), k € K, has dimension

dim VK = s trace p(k)dk .
K
To compute this integral over G, we must exploit further the computation
of dy. Let wg, w7, ®g,r be the unique invariant (under left translations
by G, T, and G respectively) differential forms of top degree whose integral
over the respective manifold is one. The the pull-back formula for integration
gives

1
s Jog = 5 S ow(eT, t)’det(dW)(gT,t)|mG/T/\0)T>
G degV Jo/rxr ’

where the determinant is computed with respect to bases spanning parallel-
ograms of unit volume with respect to the appropriate forms. Taking f to be
invariant under conjugation by G, we arrive at the famous Weyl integration
formula:

1
fog=—1| f(t)det(I - Ad(1)) o1 .
L e |W»§T © 7

Expand the function ¢+ det(/ — Ad(t)), in a sum of characters of
T:noYo+ niY1+ - + ngxr. Here 7y, is the trivial character of 7,
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appearing n, times, and for i > 0 each y;is a nontrivial character appearing
n, times. Taking for f the constant function equal to one, and applying the
basic principle of invariants to 7, we find ny = ] W[.

Taking for f the function f(g) = det(I + Ad(g)), i.e., the trace of Ad(g)
acting on Ag, we find, using the Cartan-de Rham isomorphism (4.3), that

dim H(G) = dim(Ag)¢ = 5 det (I + Ad(g)®¢
G

— LI s det (I + Ad (1)) det(I — Ad(t))n @7

| W

2dim T

= det(I — Ad(t%)) o1 .
W] S '

Now the squaring map on 7 is surjective, so the square of a nontrivial character
of T is still nontrivial. Hence the trivial character again appears with
multiplicity | W | in the expansion of det(/ — Ad(#?)),. This multiplicity is
the value of the integral, so dim H(G) = 24m7 = 2/,

On the other hand, we saw in (5.3) that the trace of w € W acting on
H(G/T) is |W|if w = 1, zero otherwise. Applying the invariance formula
one more time, we find that dim [H(G/T)® H(T)]" =2/ as well,
completing the proof of (6.1). [

We now have the main result

(6.2) THEOREM. The cohomology ring H(G) with real coefficients is

a bigraded exterior algebra with generators in bi-degrees (2m;, 1), for
1 <igl.

Proof. By (6.1) and (5.4), we have
H(G) = [H(G/T)® H(T)]" = [70) ® A1V,
and by (3.8), the latter space is an exterior algebra with generators in

degrees 2m;, 1), for 1 <i<l. [

Moreover, from the multiplicity formula (3.8), the dimensions of the
bi-graded pieces are given in terms of the exponents as follows
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(6.3) COROLLARY. For each q >0, we have

dim G
Y dim[H"-9(G/T) ® Hi(T)]"ur = uds,(u>m, ..., u?m) .
n=20
(6.4) We give two interpretations of the bigrading. First, we follow [L] and
consider the spectral sequence of the fibration G — G/ T, which has F,-term

E% = H?(G/T) ® He(T),

and converges to H(G). This spectral sequence does not degenerate at E,,
but it has a spectral subsequence which does degenerate, and still converges
to H(G).

To see this we again consider the Weyl group action. More precisely,
N acts by automorphisms of the fibration G — G/ 7T, which in turn induce
automorphisms of each term in the spectral sequence, commuting with the
differentials. On E%? = HP(G/T)® HY(T), the action of N factors
through W and is the same as that considered above. Thus we have
representations of W on the spaces E57, hence on each E?? for r > 2.

For each p,q,r we decompose E?? = (E?)" @ (E?Y)y, where the
subscript W indicates a W-stable complement to the invariants. Each of the
latter two spaces is a spectral subsequence, and since EZ? is a subquotient
of HP+49(G) and N acts trivially on H(G) (because G is connected), we must
have (E??)y = 0. On the other hand, (E??)" is a subquotient of (E5?)"
= [HP(G/T) ® H4(T)]", so we have

2! =dimH(G) = ), dim(E??)" < ). dim (E5?)"

psq p.q

=) dim[H(G/T) ® A]%" =2/,
q

It follows that dim (EZ?)" = dim (E%9)" for all pg, so the spectral
subsequence of W-invariants degenerates at (£,)", and (6.1) is proved again.

(6.5) The significance of the bigrading on H(G) can be seen in yet another
way, inspired by [GHV]. We consider, for a fixed integer k # 1, the
k™-power maps x — x*, denoted p, and P, on T and G, respectively.
It is shown in [GHV] that the Lefschetz number of P, equals that of p,,
namely (1 — k)!. Let H"(G), be the k9-eigenspace of P} acting on H"(G).
It is further shown in [GHV] that },dim H"(G), = (). We can refine
this by computing each dim H”(G), separately. Consider the commutative
diagram
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‘U*

HG) = [HG/T)®H(D)]”.

Pil | 1®rf
HG) Y [HG/T)®HD]Y.
Since p¥ acts by k¢ on H9(T), (6.1) implies that H"(G),
= [H"-9(G/T) ® Hi(T)]", and (6.3) gives the dimension of the
latter space.

(6.6) This last interpretation of the bigrading shows that it is natural in the
following sense. Suppose f: K — G is a homomorphism between two compact
connected Lie groups. Since f commutes with the power maps P, on G
and K, the cohomology map f* sends H"(G), to H"(K),. Suppose for
example that K is a closed connected subgroup of G and f is the inclusion map.
Choose, as we may, a maximal torus 7 of G such that S:= 7T n Kis a maximal
torus of K. The restriction map H(G) = H(K) becomes, via (6.1), the map
[H(G/T)® H(T]" - [HK/S) ® H(S)] "« induced by restriction on
each factor, where Wy is the Weyl group of S in K.

(6.7) We close with the homology interpretation of (6.1), which says the
homology map v induced by v is surjective. It follows that the homology
of G is spanned by the cycles [w(X,, )] ={gtg ':¢Te X, ,te T,}.
Here w e W, X, is the Schubert cell (see (5.2)) and T; = ] .7 Ii, where
T'=T, x -+ X T;, with each T; = S'. Using the results in [BGG], one can
explicitly write down the action of W on H,(G/T) in terms of the Schubert
cell basis, and this leads, in principle, to the linear relations in Hy (G) satisfied
by the cycles [y (X, , T7)].
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