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ANNEXE |
Nous allons démontrer ici la proposition suivante:

PROPOSITION 2. Soit M une surface orientée et f, f* deux immer-
sions isométriques dans E?* dont les applications de Gauss coincident. Si en
chaque point p € M la courbure moyenne de f ou de f* est non nulle,
les deux immersions [ et f* sont congruentes.

Preuve. Rappelons qu’en chaque point p € M nous avons les formes fon-
damentales suivantes, définies sur 7, M:

Ip(aa T]) =< Tpf(za)a Tpf(n)>
I,(&n) = - <T,G(), T, f(n)>
]]]p (és n) =< T,DG(&)a TIJG(T]) >

Rappelons brievement que courbure moyenne et courbure de Gauss en p sont
reliées a G et a f par les formules

1
H(p) = ETY(TpG (T, f)™Y)

K(p) = det(T,G o (T, f)"1).

L’application 7,G © (7, f)~! est un endomorphisme linéaire de 1’espace
vectoriel G(p)*+ =T, f(T,M), H(p) est la courbure moyenne de f en p
et K(p) sa courbure de Gauss en p. Les formes fondamentales de f en p
vérifient 1’identité

11, (&,n) + 2H(p)11,(&,n) + K(p)I,(&,n) =0
Notons I}, 11}, 111}, H*,G*, K* les objets analogues définis pour f*.
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Comme f et f* sont des immersions isométriques nous avons I, = [ et
K = K*, et comme G = G* nous avons aussi [1I, = III} pour tout p € M.
Les endomorphismes A, = T,G o (T, f) ‘et A¥ = T,G* o (T, f*) ! sont
auto-adjoints et sont donc représentés par des matrices symétriques dans une
base orthonormée de G(p)‘. Nous pouvons écrire A% o R, = A, ou
R,=T,f* o (T,f) ! est une rotation, vu que f et f* sont des isometries
avec méme application de Gauss. Soit 6, son angle de rotation avec
—n < 0, <n. Par symétrie de A et A* nous avons

Tr(A*R) = TrA*cos® =Trd4d e Tr(AR-!')=TrAcos6 =TrA*
D’ou les formules

H*cosO0=H e Hcos6=H*

Nous en déduisons que H* = cos?(0)H* et H = cos?(0) H, et avec nos
hypothéses, H ou H* non nuls en chaque point, nous pouvons conclure que
0, =0 ou 6, = m, pour tout p. Par connexité de M la fonction p— 0, est
constante, égale a 0 ou ©. En remplacant éventuellement f* par — f*, ce qui
ne change pas la classe de congruence de f*, nous pouvons supposer 6, = 0
pour tout p. Ainsi H = H*. Alors les identités entre les formes fondamentales
et le fait que H soit partout non nulle, impliquent 1’égalité des deuxiémes
formes fondamentales /7 = I7*. Tenant compte du fait que G = G *, la théorie
locale des surfaces montre alors que f* = 1t © f ou T est une translation de
E3. En fait Iapplication p = (f*(p) — f(p)) est localement constante donc
constante par connexité de M. En d’autres termes f est congruente & f*. [
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