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HIGHER EULER CHARACTERISTICS (I)

by Ross Geoghegan1) and Andrew Nicas2)

To Peter Hilton on the occasion of his 70-th birthday.

Abstract. The classical Euler characteristic % %o of a finite complex
lies at the bottom of a sequence of homotopy invariants. The next invariant
in this sequence %i is introduced here and studied in some detail. The rest of
the sequence, %„ with n ^ 2, will be discussed in a sequel paper. Applications
to geometric group theory are found by considering the behavior of %i on an

aspherical finite complex of fundamental group G. Just as the %(G) 4= 0

implies that the center of G is trivial (Gottlieb's Theorem), it is shown here

that (under a weak additional hypothesis and using rational coefficients)
Xi(G) ^ 0 implies that the center of G is infinite cyclic. We also find a

generalization of Gottlieb's Theorem in which the Lefschetz number of an
automorphism of G is related to the fixed subgroup of the automorphism.

Introduction

From our point of view, the classical Euler characteristic of a finite
complex is "zero-th order". In this paper we introduce a "first order" analog,
a new invariant in topology and group theory. In a sequel paper and
in [GNO] we extend these ideas to an "n-th order" Euler characteristic for
all positive n.

For a finite complex X, the new invariant Xi (X;R), defined in § 1, comes
in different forms, depending on the coefficient ring R; and a more
sophisticated version %i(X;R) defined in §2, involves the universal cover
of X. By contrast, the classical analogs of these are essentially the same,
namely the integer %(X). We should tell the reader from the start that all our
first order invariants are trivial if X is simply connected.
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4 R. GEOGHEGAN AND A. NICAS

The paper begins with three rather different definitions of
a discussion of their equivalence, and some motivation for these definitions.
Our point of view is geometric, but for readers more interested in homotopy
theory we include (at the end of § 1) a brief discussion of a fourth definition
in terms of stable homotopy theory.

Next, we discuss the computation of %i (X;R) for 1-complexes, certain
2-complexes, 3-dimensional lens spaces, circle bundles and mapping tori.

In § 5 and § 7, we apply these ideas to group theory. Motivated by Gottlieb's
theorem [Got] that if X is a finite aspherical complex with fundamental

group G and if %(G) %(X) 0 then the center of G is trivial, we find an
analog (Theorem 5.4) which says, roughly, that if %\(G; Q) %\(X; Q) ^ 0

then the center of G is infinite cyclic. This leads us to surprising generalization
of Gottlieb's theorem (Theorem 8.1). In this theorem, one is given an

automorphism 0 of G induced by a map f:X~*X. By the Lefschetz number,
L(0), of 0 we mean the Lefschetz number of /. We prove (under a weak
TGtheoretic hypothesis on G) that if 0 has order r in the group of outer
automorphisms of G and if E/Io^CÔO^O then the intersection of the

center of G and the fixed subgroup of 0 is trivial. We do not know of a previous
theorem which relates so directly the fixed subgroup of an automorphism to
the classical fixed point theory of the associated map.

We also introduce a more refined invariant %\(X) e H1 (T, HHX (ZG))
where HHX(ZG) is the first Hochschild homology group of ZG (see §1).
This is an analog of what one obtains when one computes the classical Euler
characteristic as a Hattori-Stallings trace in the universal cover of X. In the

classical case one essentially recovers %(X), but a significant distinction

appears in the case of the "higher order" invariants. In a natural manner,

%i(X) maps to Xi (X) regarded as an element of Hl (T, H\ (G)). Applications
of Xi t° characteristic classes and Seifert fiber spaces will be given in [GN5].

The ideas presented here are an outgrowth of the one-parameter fixed point
theory developed in [GN^ and its application to dynamics in [GN2].
A summary has appeared as [GN3]. Most of this paper can be read

independently of [GNJ and [GN2]. We make modest use of a few technical

propositions from [GNi] in §2 and §3; in §10 a difficult result from [GN^
is invoked.

One of the definitions of Xit^;^) employs a formula introduced more
than twenty years ago in [Kn] ; we thank Boris Okun for drawing our attention

to that paper.
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