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Mais le chemin 7, © f o y est précisément une paramétrisation d’une compo-
sante du contour apparent et par le choix de z nous pouvons affirmer que

< kdf(y(t);v' (1), 2> = p(t) = (- Di|[(n. 0 fFoy) (1)
Vielttivi].

Cette égalité reste vraie en un point cuspidal ou les deux membres valent zéro.
Par définition de la longueur algébrique de m,© f © vy nous avons alors

s *df =Y (=Dil(n,o foyl|lt,ti]). U
¥ i=1

Observons que »n est toujours pair et que par convention nous avons noté
I(n,o foy|[ty,tas1]) la somme de longueurs I(m,o fov]|l[a,t])

+ [(n, 0 foyl|lts,b]).

De ces considérations il résulte immédiatement que si pour un z € &2
avec m, 0 f générique, I’ensemble singulier ¥, posséde une composante
connexe sans points cuspidaux, I'tmmersion f est minimalement rigide.

4. EXEMPLES

Exemple 1. Non rigidité des caténoides.

Rappelons que les caténoides sont les seules surfaces de révolution
minimales et completes, voir Hildebrandt [8]. Ils sont obtenus par rotation
d’une chainette autour d’un axe. Si nous prenons pour axe de rotation
I’axe des z, les caténoides sont tous engendrés par la rotation des chainettes
x =ach (Z—zo) contenues dans le plan 0,,. Chaque caténoide peut, apres
translation, étre paramétré par

X, (s,u)y =(achucoss,achusins, au) .

Le changement de parametre (s,v) = (s, shu) définit une nouvelle para-
métrisation

Y,(s,v) = (ach(argshv)coss, ach(argshv)sins, a argsh v)

et dans cette paramétrisation les coefficients de la premiére forme fonda-
mentale sont g;; = a*(1 +0?%), 812 =0 et gz = az.

Construisons maintenant une surface réglée de E3 isométrique et non
congruente au caténoide.
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Il existe [13] des courbes fermées de E*® de longueur arbitraire, de
courbure non nulle dont la torsion est constante et égale & un. Montrons que
’image par une homothétie de E? de rapport a de la «surface» des
binormales d’une telle courbe y de longueur 27t définit une immersion de
I’anneau R2/(s,v) ~ (s + 2w, v) dans E3 qui est isométrique au caténoide
(comme surface paramétrisée). L’immersion dont I’image est la «surface»
des binormales est donnée par

Z.(s,0) = a(y(s) + vb(s)),

s étant ’abscisse curviligne de vy et b(s) désignant la binormale & y en y(s). Les
coefficients de la premiére forme fondamentale sont g;; = a?(1 + v?),
g1, =0 et gy = a’.

Ainsi, les deux immersions Y, et Z,, que nous venons de construire,
induisent la méme métrique riemannienne sur ’anneau R2/(s,v) ~ (s + 27, ),
a partir de la métrique euclidienne de E3. Cela signifie que Y, et Z,
sont des immersions isométriques de l’anneau muni de cette métrique
induite. Un calcul direct montre que la courbure moyenne de Z, égale
H(s,0) = |¥(s)|/a)/1 +v2. Comme vy est de courbure non nulle,
I’immersion Z, n’est pas minimale et ne saurait donc étre congruente a Y,.

Exemple 2. Surface minimale immergée, complete, non simplement
connexe et non minimalement rigide.

Nous considérons, dans ce qui suit, des immersions dans £3, d’un
domaine simplement connexe D C C. Il est alors sous-entendu que D est muni
de la métrique riemannienne induite par cette immersion a partir de la métrique
euclidienne de E3, de sorte que cette immersion est toujours une isométrie.
Soient f et g des fonctions, avec g méromorphe non identiquement nulle
et f holomorphe non nulle excepté aux pdles de g, ou 'ordre du zéro
de f égale I’ordre du pdle de g2. Alors pour toute paire de telles fonctions,
la représentation de Weierstrass fournit une immersion isométrique minimale
de D dans E3, donnée par la formule

w

X(w) = Re 5 d(z)dz
Wo
ou ®: D — C3 est 'application ® = (%f(l — gz),éf(l + g2), fg) et ’'inté-
grale est effectuée sur un chemin quelconque joignant w, a w.
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L’immersion adjointe X* de X est la partie imaginaire de I’application «
de D dans C?3, définie par

a(w) = s ®(z)dz .

wo

L’immersion X * induit dans D la méme métrique riemannienne que X, de plus
elle est minimale. Plus généralement pour tout 6 € R, ’application

Zo(w) = Re(e ®a(w)) = cos0 X (w) + sin0X*(w)

fournit une immersion qui induit dans D la méme métrique riemannienne
que X et qui est minimale. Explicitement cette métrique dans D est donnée par

ds> = L 7P+ 1] dz 2.
2

La fonction méromorphe g: D — C égale la projection stéréographique de
I’application de Gauss associée a Zgy, elle est donc indépendante de 0.
La courbure de Gauss est donnée par

K:_(lfuﬂgiglzv)z'

Construisons maintenant un exemple de surface minimale immergée,
compléte, non simplement connexe et non minimalement rigide. Prenons
D=0C,g(z) = —ieivret f(z) = —ie!t-92 aveca,beZet|a|>|b|>0.
Les immersions minimales associées sont données par

cos(bu — 9) [ €O U
Zo(u,0) = { (bchav + ashav) sin au
(a* = b?)
0
sin(bu — 9) | Srau 1 . 0
+ (achav + bshav) —cosaul — —sin(bu—-96) |0 ebv |
(a? — b?) 0 b X

Les immersions minimales Zg(u, v): R?2 = R3, 0 € [0, 21), définissent des
immersions isométriques minimales 29 de ’anneau R?/(u,v) ~ (u + 2k=, v)
dans E® non congruentes entre elles. Ces immersions isomeétriques ne
possédent pas de points singuliers car C est muni de la métrique induite

1
ds? = 5(1 4 e—Zau)zeZ(a—b)u > 0.




UN THEOREME DE RIGIDITE 175

Observons que C muni de cette métrique est complet car
1
ds?(u + iv) = = (e2@-Dv 4 2e-bv 4 e(-a=0)v) (du? + dv?)
2

tend vers + o si v + o vu que |a|>|b|>0. Finalement la cour-
bure totale de 29 est égale a 4amnm car D’application §, composée de
P’application de Gauss et de la projection stéréographique est égale a
g(u,v) = e~ %’(sinau, — cos au).

Nous avons donc construit une immersion isométrique minimale X sans
points singuliers d’un anneau complet de courbure totale —4am, a = 2,
qui n’est pas minimalement rigide. On peut observer que X posséde un bout
planaire et un bout de type Enneper. Les figures ci-apreés représentent
différentes étapes de la déformation isométrique de I’immersion minimale X
en 'immersion isométrique minimale adjointe X*. La figure 1 représente
la trace du domaine {(#,0)|0<u<2n0<v<1}. Les figures 2 a 5
représentent la trace du domaine précédent par les immersions isométriques
Zyavec® =n/8,n/4,3n/8, n/2. Toutes ces surfaces sont vues depuis une
direction parallele a (-1, —2, —1).

FIGURE 1

FIGURE 2
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ANNEXE |
Nous allons démontrer ici la proposition suivante:

PROPOSITION 2. Soit M une surface orientée et f, f* deux immer-
sions isométriques dans E?* dont les applications de Gauss coincident. Si en
chaque point p € M la courbure moyenne de f ou de f* est non nulle,
les deux immersions [ et f* sont congruentes.

Preuve. Rappelons qu’en chaque point p € M nous avons les formes fon-
damentales suivantes, définies sur 7, M:

Ip(aa T]) =< Tpf(za)a Tpf(n)>
I,(&n) = - <T,G(), T, f(n)>
]]]p (és n) =< T,DG(&)a TIJG(T]) >

Rappelons brievement que courbure moyenne et courbure de Gauss en p sont
reliées a G et a f par les formules

1
H(p) = ETY(TpG (T, f)™Y)

K(p) = det(T,G o (T, f)"1).

L’application 7,G © (7, f)~! est un endomorphisme linéaire de 1’espace
vectoriel G(p)*+ =T, f(T,M), H(p) est la courbure moyenne de f en p
et K(p) sa courbure de Gauss en p. Les formes fondamentales de f en p
vérifient 1’identité

11, (&,n) + 2H(p)11,(&,n) + K(p)I,(&,n) =0
Notons I}, 11}, 111}, H*,G*, K* les objets analogues définis pour f*.
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