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Mais le chemin nz o f o y est précisément une paramétrisation d'une composante

du contour apparent et par le choix de z nous pouvons affirmer que

< *rf/(Y(0; y'(0).z> p(0 =(- D'il (Kz° f ° Y)'(D II

W [ti,ti]

Cette égalité reste vraie en un point cuspidal où les deux membres valent zéro.

Par définition de la longueur algébrique de nzo f o y nous avons alors

*df Ê (-D'A^z ° / 0 Y I [D, D+i]) • O
/= 1

Observons que n est toujours pair et que par convention nous avons noté

l(nz ° f ° J \ [tn, tn + i]) la somme de longueurs l(nz ° f ° Y \ [a, t{])
+ l(nzo f °y | [tn,b]).

De ces considérations il résulte immédiatement que si pour un z e 2

avec nz o f générique, l'ensemble singulier Yz possède une composante
connexe sans points cuspidaux, l'immersion / est minimalement rigide.

4. Exemples

Exemple 1. Non rigidité des caténoïdes.

Rappelons que les caténoïdes sont les seules surfaces de révolution
minimales et complètes, voir Hildebrandt [8]. Ils sont obtenus par rotation
d'une chaînette autour d'un axe. Si nous prenons pour axe de rotation
l'axe des z, les caténoïdes sont tous engendrés par la rotation des chaînettes

x — cl ch contenues dans le plan 0XZ. Chaque caténoïde peut, après

translation, être paramétré par

Xa (s, u) (a chu cos s, a chu sin s1, au)

Le changement de paramètre (s, v) (s, sh u) définit une nouvelle
paramétrisation

Ya (s, u) (a ch(argsh v) cos s, a ch(argsh u) sin s, a argsh u)

et dans cette paramétrisation les coefficients de la première forme
fondamentale sont gn a2(l + u2)fgi2 0 et g22 a2 •

Construisons maintenant une surface réglée de E3 isométrique et non

congruente au caténoïde.
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Il existe [13] des courbes fermées de E3 de longueur arbitraire, de

courbure non nulle dont la torsion est constante et égale à un. Montrons que

l'image par une homothétie de E2 de rapport a de la «surface» des

binormales d'une telle courbe y de longueur 2tt définit une immersion de

l'anneau R2/(s, ~ (s+2n,v) dans E2 qui est isométrique au caténoïde

(comme surface paramétrisée). L'immersion dont l'image est la «surface»

des binormales est donnée par

Za(s, u) a (y (s) + ub(sj)

s étant l'abscisse curviligne de y et b(s) désignant la binormale à y en y (s). Les

coefficients de la première forme fondamentale sont gü û2(1 +^2),
gi2 0 et g22 a2.

Ainsi, les deux immersions Ya et Za, que nous venons de construire,

induisent la même métrique riemannienne sur l'anneau R2/(s, v) ~ (s + 2n, u),

à partir de la métrique euclidienne de E3. Cela signifie que Ya et Za

sont des immersions isométriques de l'anneau muni de cette métrique
induite. Un calcul direct montre que la courbure moyenne de Za égale

H (s, u) \ y (5) \/ a\/\ + u2. Comme y est de courbure non nulle,
l'immersion Za n'est pas minimale et ne saurait donc être congruente à Ya.

Exemple 2. Surface minimale immergée, complète, non simplement
connexe et non minimalement rigide.

Nous considérons, dans ce qui suit, des immersions dans E3, d'un
domaine simplement connexe D C C. Il est alors sous-entendu que D est muni
de la métrique riemannienne induite par cette immersion à partir de la métrique
euclidienne de E2, de sorte que cette immersion est toujours une isométrie.
Soient / et g des fonctions, avec g méromorphe non identiquement nulle
et / holomorphe non nulle excepté aux pôles de g, où l'ordre du zéro
de / égale l'ordre du pôle de g2. Alors pour toute paire de telles fonctions,
la représentation de Weierstrass fournit une immersion isométrique minimale
de D dans E2, donnée par la formule

Îw ®(z)dz
w0

où C3 est l'application <ï> (^/(l - g2), {f(l + g2), fg) et l'inté-
grale est effectuée sur un chemin quelconque joignant w0 à w.
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L'immersion adjointe X* de X est la partie imaginaire de l'application a
de D dans C3, définie par

aO) 1 <$>{z)dz
«J W0

L'immersion X* induit dans D la même métrique riemannienne que X, de plus
elle est minimale. Plus généralement pour tout 0 e R, l'application

Zq(w) Re(e~iBa(w)) cosQX(w) + sin0X*(w)

fournit une immersion qui induit dans D la même métrique riemannienne

que X et qui est minimale. Explicitement cette métrique dans D est donnée par

ds2 - | / |2 (1 + | g |2)21 dz |2
2

La fonction méromorphe g:D-+ C égale la projection stéréographique de

l'application de Gauss associée à Ze, elle est donc indépendante de 0.

La courbure de Gauss est donnée par

K= -(
|

V-
ll/l(i + kl2)2/

Construisons maintenant un exemple de surface minimale immergée,

complète, non simplement connexe et non minimalement rigide. Prenons

D C, g(z) - ieiaz et f(z) - iei{b~a)z, avec a, b e Z et | a | > | b | > 0.

Les immersions minimales associées sont données par

cos {bu
(b ch au + a sh av)Zq {u, V)

sin (bu - 0)
+ (a ch au + b sh au)

(a2-b2)

Les immersions minimales Ze (u, u) : R2 R3, 0 e [0, 27c), définissent des

immersions isométriques minimales Ze de l'anneau R2/(w, v) ~ (u + 2kn, v)

dans E3 non congruentes entre elles. Ces immersions isométriques ne

possèdent pas de points singuliers car C est muni de la métrique induite

ds2 — - (1 + e~2au)2e2^a~b)u > 0
2
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Observons que C muni de cette métrique est complet car

ds2(u + iu) - (e2^-b^v + 2e~bu + ei-a~b^) (du2 + du2)
2

tend vers + oo si u ± oo vu que | a \ > \ b \ > 0. Finalement la courbure

totale de Z0 est égale à 4an car l'application g, composée de

l'application de Gauss et de la projection stéréographique est égale à

g{u,v) e~au(sin au, - cos au).
Nous avons donc construit une immersion isométrique minimale X sans

points singuliers d'un anneau complet de courbure totale - 4an, a ^ 2,

qui n'est pas minimalement rigide. On peut observer que X possède un bout

planaire et un bout de type Enneper. Les figures ci-après représentent
différentes étapes de la déformation isométrique de l'immersion minimale X
en l'immersion isométrique minimale adjointe X*. La figure 1 représente
la trace du domaine {(m, u) \ 0 ^ u ^ 2tc0 ^ v ^ 1}. Les figures 2 à 5

représentent la trace du domaine précédent par les immersions isométriques
ZQ avec 0 7i/8, tt/4, 3n/8, n/2. Toutes ces surfaces sont vues depuis une
direction parallèle à (-1, -2, -1).
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Figure 4 Figure 5

Annexe I

Nous allons démontrer ici la proposition suivante:

Proposition 2. Soit M une surface orientée et f,f* deux immersions

isométriques dans E3 dont les applications de Gauss coïncident. Si en

chaque point p e M la courbure moyenne de f ou de f* est non nulle,
les deux immersions f et f* sont congruentes.

Preuve. Rappelons qu'en chaque point p e M nous avons les formes
fondamentales suivantes, définies sur TPM:

<TPm), T„f(t\)>

IIP{Ï;,ti)- <T,G(Z,),Tpf(n
IIIp(k,ï\) <TPG(Ï),n)>

Rappelons brièvement que courbure moyenne et courbure de Gauss en p sont
reliées à G et à / par les formules

H{p) l-Tx{TpGo{Tpf)-')

K(p)= det(TpG o (Tpf)~l)

L'application TpGo(Tpf)~l est un endomorphisme linéaire de l'espace
vectoriel G(p)L Tp f(TpM), H(p) est la courbure moyenne de / en p
et K{p) sa courbure de Gauss en p. Les formes fondamentales de f en p
vérifient l'identité

IIIP (Ç, q) + 2H(p)IIp (Ç, q) + K(p)IPtt, q) 0

Notons /*,//*,///*,//*, G*,K* les objets analogues définis pour /*.
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