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où a et b sont des entiers fixés avec | a | > | b | > 0. La famille Zq(u, u),

0 g [0, 2ti [, est donnée par
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3. Démonstrations

Soit M une surface orientée et f'.M^E1 une immersion isométrique.

Nous définissons Vapplication de Gauss de /, notée G:M-> 5^2, en

posant:

G(p) Tpf(ex)ATpf(e2)

où (ex,e2) est une base orthonormée, positivement orientée de TPM
et Tpf est la dérivée de / en p. Dans cette définition désigne la

sphère unité centrée à l'origine dans l'espace euclidien et le symbole «a»

y représente le produit vectoriel. L'application G est ainsi associée à / et à

l'orientation de M. Un changement d'orientation de M a pour effet de

changer G en - G. Lorsque M n'est pas orientable nous définissons

l'application de Gauss comme étant l'application de M dans le plan

projectif .^2 qui associe à chaque p e M le sous-espace orthogonal
à Tp f(TpM) dans E\

L'application de Gauss et la courbure de Gauss de M sont intimement
liées. Pour le voir, prenons M orientée et convenons de noter com sa forme
volume. C'est par définition la 2-forme différentielle prenant la valeur 1 sur
tout repère orthonormé et positivement orienté, tangent à M. Par exemple la
forme volume de la sphère ^2, munie de l'orientation appropriée, est

donnée par co y,2 (p;u{, u2) det (p, i>2). La forme différentielle induite
de co y 2 par G sur M est une 2-forme différentielle, notée G^ 00^2, qui est

nécessairement du type KcoM où K est une fonction sur M. Cette fonction est

précisément la courbure de Gauss de M. On démontre que K(p) est aussi le
déterminant de l'application Tp G o (Tpf) ~1, considérée comme endo-
morphisme de Tpf(TpM) (remarquer que TG{p) 9P2 Tpf (TPM)). En
particulier si la courbure de Gauss est non nulle en p e M, l'application de
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Gauss est inversible au voisinage de p. La théorie de Weierstrass montre que
l'application de Gauss G est conforme, au voisinage d'un point de courbure
de Gauss non nulle, lorsque l'immersion isométrique / est minimale.

Rappelons qu'une application différentiable h\ M N entre variétés

riemanniennes (M, gM) et (TV, gN) est conforme si h ^gN X • gM où X est une
fonction positive. Il est équivalent de dire que la dérivée de h conserve la

mesure des angles.

Proposition 1. Soit M une surface orientée et f,f* deux immersions

isométriques dans E3. Si f et f* sont minimales, il existe une
rotation R de E3, telle que R ° f et f* ont même application
de Gauss.

Ainsi, lorsque / et /* sont minimales, elles ont même application de Gauss

à congruence près. La propriété, pour deux immersions isométriques /
et /*, d'avoir même application de Gauss n'implique généralement pas leur

congruence, notamment lorsqu'elles sont minimales. Par contre nous avons la

proposition suivante, essentiellement due à Darboux [7].

Proposition 2. Soit M une surface orientée et f,f* deux immersions

isométriques dans E3 dont les applications de Gauss coïncident.
Si en chaque point p e M la courbure moyenne de f ou de f* est non
nulle, les deux immersions f et f* sont congruentes.

Une démonstration de la proposition 2 est donnée dans l'annexe I.
Venons-en à la preuve de la proposition 1.

Preuve. Nous montrons d'abord que les applications de Gauss G et G*
associées à deux immersions isométriques minimales / et /* sont congruentes.
Si la courbure de Gauss de M s'annule partout les applications G et G* sont
constantes et l'affirmation est alors banale. Sinon la théorie de Weierstrass

montre que cette courbure ne s'annule que sur un ensemble fermé discret
de M. Alors la composée G* o G-1 définit une application conforme d'un
ouvert de S?2 sur un ouvert de .5^2. L'égalité

(G*) ^co
c/2 — KcoM — G#CÛ ^2

montre que l'application G* o G-1 conserve aussi la forme volume de 9?2.

Or une application conforme de la sphère qui préserve le volume est

nécessairement une isométrie et une telle isométrie est une rotation de ii3,
puisque l'orientation est conservée. Ainsi G* R o G où R est une rotation.
L'égalité est vraie dans tout M parce qu'elle est vraie dans un ouvert dense.
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Revenons à l'application f. Il est immédiat que R ° f est, comme f, une

immersion isométrique minimale de M et que son application de Gauss

égale R o G. Nous en déduisons que R ° f et /* ont même application

de Gauss.

Notre étude comparative d'immersions isométriques minimales d'une

surface M dans E3 s'appuie sur quelques notions de la théorie des singularités

d'applications différentiables entre surfaces, que nous allons maintenant

préciser. Un point singulier pour une application différentiable h:M~^N,
entre surfaces, est un point p e M où la dérivée Tp h n'est pas de rang
maximum. Un point singulier p est de type pli, respectivement de type cusp,
si dans des coordonnées locales convenables de M en p et de N en h(p),
l'application h est donnée par:

(x,y)^ (x2,y)

respectivement

(x, y) ^ (x3 - xy, y)

Une application h:M^N est 2-générique si elle n'admet que des points
singuliers de type pli ou de type cusp. Dans ce cas Y ensemble singulier E(/z)
est une sous-variété fermée de dimension un dans M et les points de type cusp
en forment un sous-ensemble fermé discret. Notons que hÇL(h)) n'est en

général pas une sous-variété de N.

Pour un vecteur unitaire z e E3 nous notons Ez le sous-espace des

vecteurs orthogonaux à z et nz la projection orthogonale de E3 sur Ez.
L'espace Ez est de dimension deux et si f'.M^E3 est une immersion

isométrique, nous pouvons affirmer que l'application nz o f de M dans Ez
est générique au voisinage de tout point de M où la courbure de Gauss est non
nulle, pour presque tout z. Observons qu'un point p e M est critique
pour n z

o / si et seulement si z e Tpf{TpM) c'est-à-dire si et seulement
si G(p) e Ez où G désigne l'application de Gauss de /. Ainsi pour toute
immersion isométrique f:M^E3 l'ensemble singulier de nz o f est donné

par E(7iz o /) G~l(Ez).
Nous noterons Zz(f) l'ensemble singulier de nz o /. En particulier

si / et /* sont deux immersions isométriques de M dans E3 avec même
application de Gauss, nous avons l'égalité

£,(/) !,(/*) pour tout zeS^2.
Lorsqu'aucune confusion n'est possible nous écrivons à la place de Ez(/).
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Soit U l'ensemble {p e M \ K{p) ^ 0}. C'est un sous-ensemble ouvert de M
et si / est une immersion isométrique minimale, U est soit vide, soit le

complémentaire d'un ensemble fermé discret. Dans tous les cas U n est

une sous-variété de dimension un de U quel que soit z e 9*2. Nous allons
d'abord montrer que la fonction

u n zz 3 P h> HP) ^ (/(£z), f*Vz))
est localement constante quel que soit ze ^2. Remarquons que cet angle est

par définition l'angle entre les vecteurs Tpf(Q et Tpf*(Q de E3, où Ç est

un vecteur unitaire tangent à en p. Nous en déduirons, sous certaines

hypothèses, que l'angle entre Tpf{&) et Tpf*(Z,) est indépendant de p
et de £ e TPM.

Adoptons la terminologie suivante. Soit M une surface et f:M~+E3
une application différentiable. Nous appelons différentielle extérieure de /
la forme différentielle df, de degré un dans M et à valeurs dans E3,
définie par

df(p; £) Tpf(£) pour p e M et £ e TPM

Proposition 3. Soit M une surface, orientable ou nony et f,f*
des immersions isométriques de M dans E3, qui ont même application de

Gauss. Si la courbure de Gauss de M est presque partout non nulle

dans M, l'angle entre les vecteurs df{p\ïf) et df^ip;^) dans E3

est indépendant de ^ e ^ 0, et de p e M.

La preuve s'appuie sur deux lemmes.

Lemme 1. Soit U une surface orientée de courbure de Gauss partout
non nulle et /, /* des immersions isométriques de U dans E3 ayant
même application de Gauss. Alors l'angle entre df{p\lf) et df^ip;^)
est indépendant de ^ e TPU et indépendant de p e U.

Preuve. Remarquons d'emblée que l'angle entre les vecteurs df(p\ £)
et df*{p\ïf) est indépendant de £,e TPU. En effet, pour tout peU
les dérivées, Tpf et Tpf *, de / et /* en p envoient TPU sur le même

sous-espace orienté de E3 et comme Tpf et Tpf * sont des isométries

qui préservent l'orientation, elles diffèrent par une rotation. Cet angle

£p{df{p\ £)> df*(p; £)) qui est indépendant de % e Tp U est appelé angle

entre entre df et df* en p et nous le notons zl p(df, df*). Il s'agit donc
de montrer que cet angle est indépendant de p.
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Soit z e S^2 tel que nz o / est générique et Ez son ensemble singulier.

Nous montrons d'abord que l'angle a p(df, df*) est localement constant

comme fonction de p e Tz. Soit y: [a, b] -» une paramétrisation locale

isométrique et considérons le cylindre paramétré

> y: [a, b] x R E3 défini par (t, u) K /(y(0) + •

L'application y est une immersion sauf le long des droites {^o} x R

C [a,b] xR pour lesquelles y (to) est un point cuspidal de Ez. Nous

pouvons donc trouver un partage de [a, b]

a < tx < t2 • • • < tn +1 ^ b

dont les points de partage correspondent par y aux points cuspidaux

de £z contenus dans y ([a, b]).
Le chemin nz o y: [L, L + il Ez est une immersion sauf aux extrémités

où la dérivée est nulle et ceci pour tout 1 ^ i ^ n. La forme locale

pour nz o /, au voisinage d'un point cuspidal, montre que l'image

\j/([L, L-m] x R) est un cylindre régulier Cz immergé dans E3 et qui se

projette orthogonalement sur la courbe c, tiz o y([t/5 L + il) C

Notons également cz: [s/,5/+i] Ez la paramétrisation de c, par l'abscisse

curviligne. Alors l'application

(\)/: l$i,si+i] xR^E3 définie par (s, u) cz(5) + uz

est une immersion isométrique sur C\ Désignons encore par C la réunion
des Ci. Son développement dans un plan fournit une bande Ft, dont le bord
est formé de deux droites parallèles, que nous pouvons supposer parallèles
à z. La courbe / o y | [ti9 ti+ J est une courbe lisse, tangente, en ses

extrémités, aux composantes du bord de Ft. En recollant la bande Ft à la
bande Fi+X le long de la composante du bord correspondant à \|/({L +1} x R)
de manière que Ft et Ft + se trouvent dans le même demi-plan défini par la
droite de recollement, on pourra prolonger le développement de

\|/([tf, /y] x R) en une application de C i|/([a, b] x R) dans le plan, qui est

une isométrie dans chacune des bandes Cz Par cette isométrie la partie
\|f([a,b] x {0}) est envoyée sur une courbe lisse C2. Une construction
analogue avec /* à la place de / fournit un cylindre C* b] x R)
qui peut être appliqué dans le plan, comme avant, par une isométrie sur
chaque bande C* et tel que y*(!>>&] x {0}) est envoyé sur une courbe
lisse C2.

Notons X et X* ces courbes planes lisses C2, paramétrées par l'abscisse
curviligne. Pour chaque /, les courbures de X et X* dans ]/, /+1[ coïncident
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parce que la courbure géodésique de y | ]ti9ti+1[ dans U égale celle
de / » y | ] tif ti+ [ dans le cylindre C, et celle de /* o y | ] ti9 ti + x[ dans le

cylindre C f.
Nous savons en effet que si deux surfaces dans E3 sont tangentes le long

d'une courbe lisse, la courbure géodésique de cette dernière est la même dans

chacune des deux surfaces ([2], p. 249). Les deux surfaces sont orientées et les

orientations coïncident le long de la courbe de contact.
Or ces cylindres sont isométriques aux bandes Fi et Ff, par des isométries

qui envoient / ° y | ] ti9 ti+1 [ sur X et /* ° y | ] ti9 ti+1[ sur X*
respectivement. Comme X et X* sont des chemins C2 de [a, b] dans E2, paramétrés

par l'abscisse curviligne, nous en déduisons que X et À,* ont partout même

courbure et diffèrent par une isométrie de E2.
En particulier l'angle entre les vecteurs vitesses X'(t) et X* '(t) est constant.

Mais ces vecteurs vitesses égalent respectivement et

df*(y(t);y'(t)). De là on déduit alors que l'angle zyit)(df, df*) est une
fonction constante de t. Pour voir que l'angle z. p(df, df*) est une fonction
constante de p dans U, il suffit, en vertu de la connexité de U, de remarquer
qu'il est localement constant. Or cela est bien vrai puisque G est un
difféomorphisme local et par suite deux points suffisamment voisins dans U

peuvent être approximés par des points situés sur des lignes de pli pour
des z convenables (i.e. nz o / générique). Ceci termine la démonstration
du lemme 1.

Corollaire 1. Soit M une surface orientée et f,f* des immersions

isométriques de M dans E3, avec même application de Gauss. Si
la courbure de Gauss de M est presque partout non nulle dans M,
l'angle Ap(df,df*) est indépendant de p.

Ce corollaire résulte immédiatement du lemme précédent par continuité de

cet angle. En effet, dire que la courbure de Gauss est presque partout non nulle
c'est dire qu'elle est non nulle dans un ouvert dense de M.

Lemme 2. Soit M une surface non orientable et /, /* des

immersions isométriques de M dans E3, avec même application de

Gauss. Si la courbure de Gauss de M est presque partout non nulle
dans M, l'angle z.p(df,df *) est indépendant de p.

Preuve. Le revêtement orientable à deux feuillets de M est une surface
A

orientable M avec une projection de revêtement n de M sur M qui est
A

localement une isométrie. Orientons M. Alors f o % et /* o ^ sont des

immersions isométriques de M dans E3, avec même application de Gauss.
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Le corollaire précédent montre que l'angle Ap(d(f o 7i), £/(/* 0 n)) est

indépendant de p. Mais c'est aussi l'angle z n(p) (df, rf/*). De la surjectivité
de 71 nous en déduisons que l'angle z q(df, df*) est indépendant de

q e M.

Preuve de la proposition 3. Elle résulte immédiatement des lemmes 1 et 2

ainsi que du corollaire 1.

Voyons comment reformuler le lemme fondamental dans le langage des

formes différentielles. Soit M une surface orientée. Nous pouvons associer à

tout £, e TpMle vecteur e TpM, orthogonal à £, et de même norme et tel

que, pour é, =£ 0, la base (£, £,) fournit l'orientation donnée de TPM. La

correspondance £ *£, est alors une rotation de T^M et **£, -
En fait on peut montrer que la structure conforme, sous-jacente à la

métrique riemannienne, et l'orientation définissent une structure complexe

sur M. Pour cette structure l'opération £, n'est autre que la multiplication

par /. A l'aide de cette opération nous définissons la forme différentielle
suivante

+ df(p; Ç) df(p; *£) pour p e M et £ e TpM

C'est une 1-forme dans M à valeurs dans E13. Dans le cas où / est une
immersion isométrique, nous pouvons observer que pour chaque p e M et

chaque vecteur unitaire £ e TpM, la base (df{p; £), +df(p\ £), G(/?)) est

orthonormée et définit l'orientation canonique de E13. Il en résulte que

+ df(p \ £) G(p) Adf(p\ £,) pour tout p e M et tout £ e TpM

Plus brièvement nous pouvons écrire

*6// G Adf
Un calcul direct, par exemple dans des coordonnées conformes, montre que

d * df 2Hcom

où coM est la forme volume de M et H H • G est le vecteur courbure
moyenne, produit de la courbure moyenne H et de l'application de Gauss.
En particulier la forme *d/ est fermée, c'est-à-dire de différentielle nulle, si
et seulement si / est minimale.

Théorème 1. Soit M une surface orientée, avec courbure de Gauss
non identiquement nulle, et f une immersion isométrique minimale
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de M dans E3. Alors la forme différentielle -kdf est exacte si et
seulement si f n'est pas minimalement rigide.

Preuve. Supposons que -kdf ne soit pas exacte et soit /* une autre
immersion isométrique minimale de M dans E3. A une congruence près nous

pouvons supposer que / et /* ont même application de Gauss. Alors nos
hypothèses garantissent que l'angle a entre df(p; Ç) et df*(p;£,) est

constant, indépendant de peM et £ e TPM. Comme G G* nous
savons que le vecteur df*(p;£,) est dans le sous-espace Tpf{TpM) dont
(df(P'>£>)> *df(p; £)) est une base orthonormée, si £, est unitaire. Ainsi

df*{p\ Ç) cos a df(p; £) + sin a kdf(p; Ç) pour tout p e M
et tout £ e TPM

Plus brièvement nous écrivons

df* cos a df + sin a +df
Alors, a étant constant, nous pouvons écrire

d(f* - cos a f) sin a irdf
En particulier si sin a ^ 0 la forme -kdf est nécessairement exacte.

Donc, comme -kdf n'est pas exacte nous avons a 0 ou a n. En

remplaçant éventuellement / par -/, ce qui ne change pas la classe de

congruence, nous pouvons supposer a 0. Dans ce cas les deuxièmes formes
fondamentales II - <dG,df> et II* - <dG*, df* > coïncident

en chaque point de M car df df* et dG dG*. Par ailleurs les

premières formes fondamentales coïncident puisque / et f* sont des

isométries. Ainsi dans ce cas f et f* sont congruentes, de sorte que / est

minimalement rigide.
Réciproquement si -kdf est exacte il existe une application §\M-+E3

telle que d§ +df. Pour chaque a e R nous pouvons considérer

l'application

M 3 p^ cos af (p) + sinac|>(p) ga(p) •

Cette application est nécessairement une immersion isométrique minimale. En

effet, c'est une immersion car dga (p; £) df(p; cos aÇ + sin a(*Ç))
et ce dernier vecteur est unitaire pour tout vecteur unitaire £, e TPM. Cette

même égalité montre aussi que l'immersion ga est une isométrie. Vérifions

qu'elle est bien minimale. Or nous avons:

*dga cos ad(\> - sin adf
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Il en résulte que +dga est exacte et donc aussi fermée, ce qui est équivalent
à dire que l'immersion isométrique ga est minimale. Nous avons ainsi

toute une famille à un paramètre d'immersions isométriques minimales

contenant /. De plus toutes ces immersions ont même application de Gauss,

par construction. Comme l'image de M par cette application de Gauss est

d'intérieur non vide dans 5^2, les seules isométries de E3, qui par
composition avec / fournissent des isométries ayant même application de

Gauss, sont les translations. Cela signifie que si les applications ga étaient

congruentes à / elles devraient l'être par des translations. Or ceci est

certainement absurde puisque df =£ dga. Ainsi / n'est pas minimalement
rigide.

Remarquons que la non exactitude de +df est équivalente à l'existence
d'un chemin fermé y, lisse par morceaux, tel que

| +df =£ 0

Par ailleurs il est remarquable que parmi les immersions isométriques
minimales, ce type de déformations soit le seul possible, à congruence près.
Plus précisément nous avons le corollaire suivant.

Corollaire 2. Soit M une surface orientée et f:M^E3 une
immersion isométrique minimale. Supposons +df d$. Alors toute
immersion isométrique minimale /* de M dans E3 s'écrit, à

congruence près, sous la forme

f* cos af + sin a0

avec a e [0, 27t [

Preuve. Nous pouvons supposer M de courbure de Gauss non
identiquement nulle. Alors le théorème 1 montre que

df* cos a df + sin a dfy

avec a g [0, 27t [ constant. Il en résulte que df* (cos af + sin ach). Ainsi,
par connexité de M, les immersions f* et cos a/ + sinac|> diffèrent d'un
vecteur constant dans E3. D'où l'égalité cherchée, à congruence près.

Soit M une surface non orientable et soit M son revêtement orientable à
deux feuillets. Nous le munissons d'une orientation. Soit 7t : MM la
projection de revêtement. Tout chemin y : [a, b] M admet un relèvement
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y : [a, b] -> M c'est-à-dire un chemin tel que n o y y. Nous avons alors le

corollaire suivant qui se déduit de la proposition 3.

Corollaire 3. Soit M une surface non orientable avec courbure de

Gauss non nulle dans un ouvert dense et f,f* des immersions isométriques
de M dans E3, avec même application de Gauss. S'il existe un chemin

fermé y dans M tel que

+ d{f o n) 0
i y

alors f et f* sont congruentes.

Preuve. Les applications h f o n et h* f*on sont des immer -
A

sions isométriques de M dans E3, avec même application de Gauss. Nos

hypothèses impliquent que la courbure de Gauss de M est non nulle dans un
ouvert dense. Nous en déduisons que l'angle entre dh(p) et dh*(p) est

indépendant de p. Notons le a. Soit y : [a, b] -> M un chemin fermé tel que

irdh ^ 0 où y est un relèvement de y
y

Remarquons que y n'est pas nécessairement fermé. Comme dans la
démonstration du lemme fondamental nous avons:

dh* cos a 1 dh + sin a 1 -kdh
y J y <J

Y

or

dh* h*(y(b)) - h*(y(a))f*(y - f*(y(a)) 0

De même

dh 0 et ainsi sin a 1 -kdh 0

V J Y

Donc a 0 ou a n et nous pouvons en déduire que les immersions h

et A* sont congruentes. Par surjectivité de n il en résulte que / et / * diffèrent

par une isométrie de E3.

Théorème 2. Soit M une surface non orientable et f,f* des

immersions isométriques minimales de M dans E3. Alors f et /*
sont congruentes.
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Preuve. Comme M est non orientable, la courbure de Gauss de M
n'est pas identiquement nulle. Par minimalité de l'immersion isométrique / il
s'en suit que la courbure de Gauss est non nulle dans un ouvert dense. A

congruence près nous pouvons supposer que / et /* ont même application
de Gauss.

Si / et /* n'étaient pas congruentes, nous aurions la relation

j +d(f on)0

pour tout chemin fermé y dans M et tout relèvement y de y, dans le

revêtement orienté à deux feuillets M de M. Comme auparavant nous

avons noté tc:M^> M la projection de revêtement. Posons h / o 71 et

h* f* on. Alors la condition

-kdh 0

Y

A

implique que -kdh d\\f où \jf.M^E3 est une application différentiable
A

telle que \j/(x) \|/(*') pour tout x, x' eM avec n(x) n(x'). Nous en

déduisons que \j/ $ o 71 où 0 : M E3 est différentiable.
Considérons les éléments de E3 comme des matrices diagonales d'ordre

trois. Nous avons alors la 2-forme différentielle, à valeurs réelles,

Tr{dh a +dh) (p ; £,, r|)
Tr(dh{p\4)(t kdh(p-r\))- (+dh(p; Ç)))

A

C'est une 2-forme dans M qui égale - 2com, où cûm est la forme volume
de M. En particulier elle est partout non nulle. Mais elle est induite
par n d'une 2-forme de M. En fait

Tr(dh a +dh) n
^ Tr(df a ûù|))

Ainsi, par surjectivité de n, la 2-forme différentielle Tr(df a dty) est partout
non nulle dans M. Or l'existence d'une telle forme est équivalente à l'orien-
tabilité de M. Ceci est contraire à l'hypothèse.

Revenons au cas d'une surface orientée M et d'une immersion isométrique
minimale f:M~+E3. Le théorème 1 montre qu'il est intéressant d'avoir des
critères géométriques qui garantissent la non-exactitude de *<//. C'est ce que
nous allons examiner brièvement.
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Critère A. Pour chaque z g 5^2 nous considérons la fonction hauteur

hz:M-+R définie par M 3 hz(p) <f(p),z>, où < > désigne
le produit scalaire dans E3. Si la courbure de Gauss de M n'est pas
identiquement nulle, ce que nous supposons pour la suite, l'image de hz est un
intervalle d'intérieur non vide. En particulier nous pouvons choisir une
valeur régulière ce R avec h~l(c) non vide. L'ensemble N h~l(c) est

alors une sous-variété de dimension 1 de M. Soit p e N et ^ e TPN un
vecteur unitaire. Alors

dhz(p; £) 0 <df(pi%),z>
et comme c est une valeur régulière, p n'est pas critique en sorte que
dhz(p; *Ç) *0.
Ainsi

<*df(p;Z>),z> *0Vp eN et Ç e TPN, Ç * 0

En particulier si N possède une composante connexe compacte,
cette composante pourra être paramétrisée par un chemin fermé lisse

y : [a, b] N C M et en vertu de ce qui précède < +df(y(tyiy'(t)),z>
est non nul pour tout te [a, b]. Il en résulte que

| +df* 0.

Nous en déduisons que -kdf n'est pas exacte et par suite, que / est mini-
malement rigide.

Corollaire 4. Une surface minimale complète dans E3, qui est

de type topologique fini et possède au moins deux bouts, est minimalement
rigide.

Preuve. Par un résultat de Collin [5], de telles surfaces sont de courbure
totale finie. Or on sait que pour une surface minimale complète de courbure
totale finie, l'application de Gauss converge lorsqu'on s'approche d'un
bout [10]. Ces valeurs limites pour les différents bouts sont toutes colinéaires

parce que la surface est plongée. Soit z e l'une de ces valeurs limites.
Le comportement asymptotique des bouts montre que la fonction hz

converge ou tend vers l'infini lorsqu'on s'approche d'un bout (voir [11]). En
choisissant une valeur régulière pour hZi distincte d'une de ces valeurs

limites, on obtient une image réciproque compacte et non vide. Le critère A
ci-dessus établit alors la rigidité minimale de la surface.
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Critère B. Avec les notations de la proposition 1, considérons cette fois

la composée nz ° f* C'est une application 2-générique de M dans le

plan Ez pour presque tout z e 2 et en fait pour tout z si la courbure de

Gauss de M est partout non nulle. Lorsque l'ensemble des points

singuliers de nz o f possède une composante connexe compacte et que

y: [a, b] ^ M est une paramétrisation d'une telle composante, nous

considérons le partage

a < t\ < t2 < " ' < tn < b

tel que les points y(C) sont les points de type cusp de la composante
de considérée. Notons s, le signe de la fonction

P(0 - <zaG(y(0), tf/(y(0; Y'(0)> pour t e ]ti, ti+1[

Alors l'intégrale j <+df,z> égale la somme alternée des longueurs

l(nz ° f ° Y([ti, ti+ il)). Nous appelons cette somme alternée la longueur
algébrique de la composante nz o / oy{[a,b]) du contour apparent. En

particulier si cette longueur algébrique est non nulle, l'intégrale est non nulle
et la forme *é// n'est pas exacte. Il est ainsi possible, dans certains cas de

voir la rigidité d'une immersion isométrique minimale f:M^E2 à partir
d'une projection générique de /(M).

Explication. Nous pouvons supposer le chemin y lisse et en remplaçant
éventuellement z par - z que p(t) ^ 0 pour tout t e [a, t{] et t e [tn, b].
Chaque fois que nous passons un point de type cusp la fonction p s'annule
et change de signe. C'est-à-dire, £/+i= - s/ pour z= et en

convenant que + { 1. Cela résulte de la forme locale standard de la
surface /(M) au voisinage d'un point cuspidal. Par ailleurs nous savons

que la forme différentielle -kdf est liée à df et à l'application de Gauss G
de / par la relation: +df(p; Ç) G(p) Adf(p; ^). Il en résulte que

< +df(p;£,), z > det (G(p), df(p;i,), z)<z/\G(p),df(p\l,)>
Comme l'application nz est linéaire nous avons

< *df(p;ï,),z> <zaG(p)o /) (p;ï,)>
Lorsque p y (t)en'est pas un point cuspidal, le vecteur zaG(y(/))
est unitaire et tangent au contour apparent y([a,b]) au point
^(/(y(0)) et si £, y '(t) l'expression <+df(p-,ï,),z> égale p(t).
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Mais le chemin nz o f o y est précisément une paramétrisation d'une composante

du contour apparent et par le choix de z nous pouvons affirmer que

< *rf/(Y(0; y'(0).z> p(0 =(- D'il (Kz° f ° Y)'(D II

W [ti,ti]

Cette égalité reste vraie en un point cuspidal où les deux membres valent zéro.

Par définition de la longueur algébrique de nzo f o y nous avons alors

*df Ê (-D'A^z ° / 0 Y I [D, D+i]) • O
/= 1

Observons que n est toujours pair et que par convention nous avons noté

l(nz ° f ° J \ [tn, tn + i]) la somme de longueurs l(nz ° f ° Y \ [a, t{])
+ l(nzo f °y | [tn,b]).

De ces considérations il résulte immédiatement que si pour un z e 2

avec nz o f générique, l'ensemble singulier Yz possède une composante
connexe sans points cuspidaux, l'immersion / est minimalement rigide.

4. Exemples

Exemple 1. Non rigidité des caténoïdes.

Rappelons que les caténoïdes sont les seules surfaces de révolution
minimales et complètes, voir Hildebrandt [8]. Ils sont obtenus par rotation
d'une chaînette autour d'un axe. Si nous prenons pour axe de rotation
l'axe des z, les caténoïdes sont tous engendrés par la rotation des chaînettes

x — cl ch contenues dans le plan 0XZ. Chaque caténoïde peut, après

translation, être paramétré par

Xa (s, u) (a chu cos s, a chu sin s1, au)

Le changement de paramètre (s, v) (s, sh u) définit une nouvelle
paramétrisation

Ya (s, u) (a ch(argsh v) cos s, a ch(argsh u) sin s, a argsh u)

et dans cette paramétrisation les coefficients de la première forme
fondamentale sont gn a2(l + u2)fgi2 0 et g22 a2 •

Construisons maintenant une surface réglée de E3 isométrique et non

congruente au caténoïde.
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