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Meeks et White on introduit récemment la notion de rigidité minimale,
rappelée plus bas [3]. Ces auteurs ont aussi établi des critères pour montrer
que certaines surfaces sont minimalement rigides. Ainsi le caténoïde est

une surface minimalement rigide, comme d'ailleurs toute surface minimale
à deux bouts (voir plus bas ou voir [3]). Par contre toute surface minimale
simplement connexe, dont la courbure de Gauss n'est pas identiquement nulle,
n'est pas minimalement rigide (voir théorème 1). Si la courbure de Gauss

d'une surface minimale complète est identiquement nulle, Osserman montre

que cette surface est un plan, elle est donc minimalement rigide [10]. Cette

rigidité minimale reste vraie pour une surface minimale connexe, avec

courbure de Gauss nulle et qui n'est pas nécessairement complète. En effet,
dans ce cas, la surface en question est un ouvert d'un plan et toute isométrie
entre ouverts plans connexes est une congruence. Remarquons qu'un plan est

minimalement rigide, sans être rigide (on peut le courber). Cette propriété
n'est pas spécifique au plan. Dans le chapitre d'exemples, nous donnons une
surface réglée isométrique et non congruente au caténoïde.

Notre premier objectif dans ce travail est de reformuler certains critères

de [3], d'en donner de nouvelles preuves, et d'en déduire quelques

conséquences non explicites dans [3]. L'une de ces conséquences est qu'une
surface minimale non orientable immergée isométriquement dans E3 est

minimalement rigide. Le résultat principal de [3] dit qu'une surface minimale

complète proprement plongée dans E3 qui possède plus d'un bout est

minimalement rigide. Nous en redonnons ici la démonstration dans le cas plus

simple où la courbure totale est finie. Récemment, Collin [5] a montré que cette

condition sur la courbure totale est équivalente à la finitude du type
topologique, ceci pour les surfaces minimales proprement plongées ayant au
moins deux bouts. Lorsqu'on considère des surfaces immergées il n'en va plus
de même. Nous exhibons dans le chapitre d'exemples un anneau minimal

complet, immergé dans E3, et qui n'est pas minimalement rigide.

2. Résultats

Nous convenons ici qu'une surface M est une variété riemannienne de

dimension deux qui est connexe, sans bord, séparée, à base dénombrable et

infiniment différentiable. Une surface n'est pas nécessairement complète. Deux
immersions isométriques /, g de M dans l'espace euclidien E3 de dimension

trois sont congruentes s'il existe une isométrie ^ de L3 telle que g A o /.
Une immersion isométrique f:M^>E3 est minimale si, pour tout p e M, il
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existe un voisinage ouvert V de p dans M tel que la restriction de / à V soit

un plongement et tel que la courbure moyenne de f(V) soit nulle. Une

surface M qui possède une immersion isométrique minimale f:M~+E3 est

minimalement rigide si toute autre immersion minimale isométrique de M
dans E3 est congruente à /. Le résultat fondamental de rigidité de Choi,

Meeks et White (théorème 1.2 de [3]) s'énonce comme suit.

Lemme fondamental [3]. Soit f une immersion isométrique minimale

d'une surface M dans E3. On suppose qu'il existe une courbe fermée
lisse par morceaux dans M, donnée avec un paramétrage y : [0, / ] -* M,

par abscisse curviligne, ainsi qu'un champ de vecteurs unités V: [0, /] E3

le long de y tangents à f (M) et normaux à y tels que

| * 0

Alors la surface M est minimalement rigide.

La démonstration de [3] est basée sur le théorème de classification de

Weierstrass des immersions isométriques minimales d'ouverts simplement
connexes plans munis de métriques conformes à la métrique euclidienne;

pour cette théorie, voir le livre de R. Ossermann [10], pages 30-52. Nous
reformulons ce résultat comme suit, et en donnons une preuve basée sur les

propriétés de la dualité de Hodge entre 1-formes d'une surface orientée.

Théorème 1. Soit M une surface orientée, avec courbure de Gauss

non identiquement nulle, et f une immersion isométrique minimale
de M dans E3. Alors la forme différentielle + df est exacte si et
seulement si f n'est pas minimalement rigide.

L'étoile * désigne la dualité de Hodge, de sorte que *df est une
1-forme sur M à valeurs dans E3. Cette forme est fermée si et seulement
si / est minimale. L'hypothèse d'orientabilité et de courbure de Gauss non
identiquement nulle, qui ne figure pas dans [3], est nécessaire ici pour l'énoncé
et la démonstration. Nous traitons à part les cas où la surface est non orientable
ou de courbure de Gauss nulle. De manière générale l'étude des immersions
isométriques minimales d'une surface non orientable se ramène à celle des

immersions isométriques minimales du revêtement orientable à deux feuillets
de la surface (cf. De Oliveira [9] ou Toubiana [12]). Nous avons le théorème
suivant.
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Théorème 2. Les surfaces minimales non orientables immergées
dans E3 sont minimalement rigides.

Quant aux surfaces minimales de courbure de Gauss nulle, leur rigidité
minimale se démontre directement et sans difficultés. Les théorèmes 1 et 2 sont
des conséquences de la proposition 3, qui caractérise les immersions

isométriques ayant même application de Gauss et courbure de Gauss presque

partout non nulle.

Proposition 3. Soit M une surface, orientable ou non, et f,f*
des immersions isométriques de M dans E3, qui ont même application de

Gauss. Si la courbure de Gauss de M est presque partout non nulle
dans M, l'angle entre les vecteurs df{p\tf) et df*{p\l,) dans E3

est indépendant de £, e TPM, % ^ 0, et de p e M.

Dans cet énoncé, TPM désigne l'espace tangent à M en p et df est

la différentielle de /. Remarquons que les vecteurs df(p; ^) et df*{p\Zf)
sont non nuls de sorte que l'angle entre ces vecteurs est bien défini. La
démonstration de la proposition 3 s'appuie sur deux lemmes qui traitent
successivement le cas orientable et le cas non orientable. Le théorème 1 nous
incite à chercher des critères géométriques qui garantissent la non-exactitude
de la forme différentielle * df. Nous élaborons deux critères, dont l'un figure
déjà dans [3]. Ces critères permettent d'aboutir au corollaire suivant.

Corollaire 5. Une surface minimale complète dans E3, qui est de

type topologique fini et possède au moins deux bouts3 est minimalement

rigide.

La démonstration utilise un résultat récent de Collin [5].

Finalement nous donnons deux exemples. Le premier montre la

non rigidité des caténoïdes et consiste en une surface réglée isométrique
et non congruente au caténoïde. Le second fournit une famille à un

paramètre d'immersions isométriques minimales non congruentes de

l'anneau R2/(w, v) ~ {u + 2kn, u) dans E3. Dans cet exemple l'anneau est

muni de la métrique:

- (1 + e~2au)2 e2{a~b)ü (du2 + dv2)
2
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où a et b sont des entiers fixés avec | a | > | b | > 0. La famille Zq(u, u),

0 g [0, 2ti [, est donnée par

Zq(u, v)

+ (ach au + bshav)

(behau + ash au)

sin (bu - 0)

(a2 - b2)

sin au

- cos au
0

cos (bu - 0)

(a2 - b2)

1

I cos au]
sin au

0

sin (bu - 0)
1°)

0 eb"

\l)

3. Démonstrations

Soit M une surface orientée et f'.M^E1 une immersion isométrique.

Nous définissons Vapplication de Gauss de /, notée G:M-> 5^2, en

posant:

G(p) Tpf(ex)ATpf(e2)

où (ex,e2) est une base orthonormée, positivement orientée de TPM
et Tpf est la dérivée de / en p. Dans cette définition désigne la

sphère unité centrée à l'origine dans l'espace euclidien et le symbole «a»

y représente le produit vectoriel. L'application G est ainsi associée à / et à

l'orientation de M. Un changement d'orientation de M a pour effet de

changer G en - G. Lorsque M n'est pas orientable nous définissons

l'application de Gauss comme étant l'application de M dans le plan

projectif .^2 qui associe à chaque p e M le sous-espace orthogonal
à Tp f(TpM) dans E\

L'application de Gauss et la courbure de Gauss de M sont intimement
liées. Pour le voir, prenons M orientée et convenons de noter com sa forme
volume. C'est par définition la 2-forme différentielle prenant la valeur 1 sur
tout repère orthonormé et positivement orienté, tangent à M. Par exemple la
forme volume de la sphère ^2, munie de l'orientation appropriée, est

donnée par co y,2 (p;u{, u2) det (p, i>2). La forme différentielle induite
de co y 2 par G sur M est une 2-forme différentielle, notée G^ 00^2, qui est

nécessairement du type KcoM où K est une fonction sur M. Cette fonction est

précisément la courbure de Gauss de M. On démontre que K(p) est aussi le
déterminant de l'application Tp G o (Tpf) ~1, considérée comme endo-
morphisme de Tpf(TpM) (remarquer que TG{p) 9P2 Tpf (TPM)). En
particulier si la courbure de Gauss est non nulle en p e M, l'application de
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