Zeitschrift: L'Enseignement Mathématique
Herausgeber: Commission Internationale de I'Enseignement Mathématique

Band: 41 (1995)

Heft: 1-2: L'ENSEIGNEMENT MATHEMATIQUE

Artikel: UN THEOREME DE RIGIDITE POUR LES SURFACES MINIMALES
DE $E"3%

Autor: Burlet, Oscar / Haab, Francois

Kapitel: 2. RESULTATS

DOI: https://doi.org/10.5169/seals-61823

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich fur deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veroffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanalen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En regle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
gu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 25.01.2026

ETH-Bibliothek Zurich, E-Periodica, https://www.e-periodica.ch


https://doi.org/10.5169/seals-61823
https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en

156 O. BURLET ET F. HAAB

Meeks et White on introduit récemment la notion de rigidité minimale,
rappelée plus bas [3]. Ces auteurs ont aussi établi des critéres pour montrer
que certaines surfaces sont minimalement rigides. Ainsi le caténoide est
une surface minimalement rigide, comme d’ailleurs toute surface minimale
a deux bouts (voir plus bas ou voir [3]). Par contre toute surface minimale
simplement connexe, dont la courbure de Gauss n’est pas identiquement nulle,
n’est pas minimalement rigide (voir théoréme 1). Si la courbure de Gauss
d’une surface minimale compléte est identiquement nulle, Osserman montre
que cette surface est un plan, elle est donc minimalement rigide [10]. Cette
rigidité minimale reste vraie pour une surface minimale connexe, avec
courbure de Gauss nulle et qui n’est pas nécessairement compléte. En effet,
dans ce cas, la surface en question est un ouvert d’un plan et toute isométrie
entre ouverts plans connexes est une congruence. Remarquons qu’un plan est
minimalement rigide, sans €tre rigide (on peut le courber). Cette propriété
n’est pas spécifique au plan. Dans le chapitre d’exemples, nous donnons une
surface réglée isométrique et non congruente au caténoide.

Notre premier objectif dans ce travail est de reformuler certains criteres
de [3], d’en donner de nouvelles preuves, et d’en déduire quelques
conséquences non explicites dans [3]. L’une de ces conséquences est qu’une
surface minimale non orientable immergée isométriquement dans E3 est
minimalement rigide. Le résultat principal de [3] dit qu’une surface minimale
compléte proprement plongée dans E3 qui possede plus d’un bout est
minimalement rigide. Nous en redonnons ici la démonstration dans le cas plus
simple ou la courbure totale est finie. Récemment, Collin [5] a montré que cette
condition sur la courbure totale est équivalente a la finitude du type
topologique, ceci pour les surfaces minimales proprement plongées ayant au
moins deux bouts. Lorsqu’on considére des surfaces immergées il n’en va plus
de méme. Nous exhibons dans le chapitre d’exemples un anneau minimal
complet, immergé dans E3, et qui n’est pas minimalement rigide.

2. RESULTATS

Nous convenons ici qu’une surface M est une variété riemannienne de
dimension deux qui est connexe, sans bord, séparée, a base dénombrable et
infiniment différentiable. Une surface n’est pas nécessairement complete. Deux
immersions isométriques f, g de M dans I’espace euclidien E£*® de dimension
trois sont congruentes s’il existe une isométrie A de E3 telle que g = A © f.
Une immersion isométrique f: M — E?3 est minimale si, pour tout p € M, il
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existe un voisinage ouvert ¥ de p dans M tel que la restriction de f a V soit
un plongement et tel que la courbure moyenne de f(V) soit nulle. Une
surface M qui posséde une immersion isométrique minimale f: M - E3 est
minimalement rigide si toute autre immersion minimale isométrique de M
dans E? est congruente & f. Le résultat fondamental de rigidité de Choi,
Meeks et White (théoréme 1.2 de [3]) s’énonce comme suit.

LEMME FONDAMENTAL [3]. Soit f une immersion isométrique minimale
d’une surface M dans E3. On suppose qu’il existe une courbe fermée
lisse par morceaux dans M, donnée avec un paramétrage v:|[0,1] > M,
par abscisse curviligne, ainsi qu’un champ de vecteurs unités V:[0,/] = E3
le long de v tangents a f(M) et normaux @ vy tels que

/
S V(s)ds # 0 .

0

Alors la surface M est minimalement rigide.

La démonstration de [3] est basée sur le théoréme de classification de
Weierstrass des immersions isométriques minimales d’ouverts simplement
connexes plans munis de métriques conformes a la métrique euclidienne;
pour cette théorie, voir le livre de R.Ossermann [10], pages 30-52. Nous
reformulons ce résultat comme suit, et en donnons une preuve basée sur les
propri¢tés de la dualit¢é de Hodge entre 1-formes d’une surface orientée.

THEOREME 1. Soit M une surface orientée, avec courbure de Gauss
non identiquement nulle, et [ une immersion isométrique minimale
de M dans E3. Alors la forme différentielle % df est exacte si et
seulement si f n’est pas minimalement rigide.

L’étoile * désigne la dualité de Hodge, de sorte que % df est une
I-forme sur M a valeurs dans E3. Cette forme est fermée si et seulement
st f est minimale. L hypothése d’orientabilité et de courbure de Gauss non
identiquement nulle, qui ne figure pas dans [3], est nécessaire ici pour I’énoncé
et la démonstration. Nous traitons a part les cas ou la surface est non orientable
ou de courbure de Gauss nulle. De maniére générale I’étude des immersions
isométriques minimales d’une surface non orientable se rameéne a celle des
immersions isométriques minimales du revétement orientable a deux feuillets

de la surface (cf. De Oliveira [9] ou Toubiana [12]). Nous avons le théoréme
suivant.
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THEOREME 2. Les surfaces minimales non orientables immergées
dans E?* sont minimalement rigides.

Quant aux surfaces minimales de courbure de Gauss nulle, leur rigidité
minimale se démontre directement et sans difficultés. Les théorémes 1 et 2 sont
des conséquences de la proposition 3, qui caractérise les immersions
isométriques ayant méme application de Gauss et courbure de Gauss presque
partout non nulle.

PROPOSITION 3. Soit M wune surface, orientable ou non, et f,f*
des immersions isométriques de M dans E?3, qui ont méme application de
Gauss. Si la courbure de Gauss de M est presque partout non nulle
dans M, [angle entre les vecteurs df(p;&) et df*(p;&) dans E?
est indépendant de & e€ T,M, & + 0, etde pe M.

Dans cet énoncé, 7, M désigne I’espace tangent a M en p et df est
la différentielle de f. Remarquons que les vecteurs d f(p; &) et df*(p; &)
sont non nuls de sorte que 1’angle entre ces vecteurs est bien défini. La
démonstration de la proposition 3 s’appuie sur deux lemmes qui traitent
successivement le cas orientable et le cas non orientable. Le théoréme 1 nous
incite a chercher des criteres géométriques qui garantissent la non-exactitude
de la forme différentielle % d f. Nous élaborons deux criteres, dont I’un figure
déja dans [3]. Ces critéres permettent d’aboutir au corollaire suivant.

COROLLAIRE 5. Une surface minimale complete dans E3, qui est de
type topologique fini et posséde au moins deux bouts, est minimalement
rigide.

La démonstration utilise un résultat récent de Collin [5].

Finalement nous donnons deux exemples. Le premier montre la
non rigidité des caténoides et consiste en une surface réglée isométrique
et non congruente au caténoide. Le second fournit une famille a un
paramétre d’immersions isométriques minimales non congruentes de
I’anneau R2/(u,v) ~ (u + 2km,v) dans E3. Dans cet exemple ’anneau est
muni de la métrique:

1
5 (1 + e—Zau)Z eZ(a—b)u (duz 4 dU2)
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oll @ et b sont des entiers fixés avec |a|>|b|> 0. La famille Z¢(u,0),
8 € [0, 27|, est donnée par

cos(bu — 0) cos au

Zo(u,v) = {(bchav + ashav) @ _ b sin qu
0
sin(bu — @) [ Sna¥ 1 0
+ (achav + bshav) _cosaul| — —sin(bu —6) o] } e®” .
(@ = b%) 0 1

3. DEMONSTRATIONS

Soit M une surface orientée et f: M — E3 une immersion isometrique.
Nous définissons Uapplication de Gauss de f, notée G: M — &2, en
posant:

G(p)=T,f(e))nT,[f(es)

ou (e;,e,) est une base orthonormée, positivement orientée de 7, M
et T,f est la dérivée de f en p. Dans cette définition &2 désigne la
sphére unité centrée a ’origine dans I’espace euclidien et le symbole «A»
y représente le produit vectoriel. L’application G est ainsi associée a f et a
I’orientation de M. Un changement d’orientation de M a pour effet de
changer G en — G. Lorsque M n’est pas orientable nous définissons
I’application de Gauss comme étant [’application de M dans le plan
projectif 27? qui associe a chaque p € M le sous-espace orthogonal
aT,f(T,M) dans E3.

L’application de Gauss et la courbure de Gauss de M sont intimement
lices. Pour le voir, prenons M orientée et convenons de noter w,, sa forme
volume. C’est par définition la 2-forme différentielle prenant la valeur 1 sur
tout repere orthonormeé et positivement orienté, tangent a M. Par exemple la
forme volume de la sphére &2, munie de ’orientation appropriée, est
donnée par o -2 (p;vy,0,) = det(p, v, ;). La forme différentielle induite
de o -,» par G sur M est une 2-forme différentielle, notée G'o 2, qui est
nécessairement du type Kwj, ou K est une fonction sur M. Cette fonction est
précisément la courbure de Gauss de M. On démontre que K(p) est aussi le
déterminant de I’application 7,G o (T, f) !, considérée comme endo-
morphisme de T, f(T,M) (remarquer que TG, ¥ 2 = T,f(T,M)). En
particulier si la courbure de Gauss est non nulle en p € M, I’application de



	2. RÉSULTATS

