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L'Enseignement Mathématique, t. 41 (1995), p. 155-178

UN THÉORÈME DE RIGIDITÉ
POUR LES SURFACES MINIMALES DE E3

par Oscar Burlet et François Haab 1

1. Introduction

Le problème de la rigidité des surfaces (sous-variétés de dimension deux)

dans l'espace euclidien E3 consiste à savoir dans quelle mesure deux surfaces

peuvent être isométriques, sans que cette isométrie soit réalisée par une

isométrie globale de E3. Pour des raisons pratiques, nous appelons

congruence une isométrie globale de E"3 et nous disons que deux surfaces sont

congruentes si elles se correspondent par une congruence. La question que

nous nous posons est donc de savoir si une surface donnée dans E3 est la

seule, à congruence près, qui lui soit isométrique? Si la réponse est oui, nous
dirons qu'elle est rigide.

L'un des résultats les plus anciens dans cette direction est probablement
le théorème de Cauchy qui affirme qu'une surface polyédrale convexe est

rigide. En ce qui concerne les surfaces lisses qui nous préoccupent ici, on
peut mentionner le théorème de Cohn-Vossen [4], qui affirme que deux
surfaces analytiques, convexes et compactes qui sont isométriques sont
nécessairement congruentes. Ce résultat a été étendu, par Herglotz au cas
des surfaces trois fois continûment différentiables (C3). Il s'avère qu'il est

encore vrai dans le cas des surfaces C2 mais qu'il est faux dans le cas des

surfaces C1, voir Connelly [6]. Par ailleurs un résultat d'Alexandroff [1]
affirme que si deux surfaces analytiques tendues, dans E3, sont isométriques
elles sont congruentes (une surface dans E3 est dite tendue si tout plan
de E3 la divise en au plus deux composantes connexes).

Rappelons qu'une surface est dite minimale si sa courbure moyenne est
nulle. A notre connaissance on ne sait pas s'il existe des surfaces minimales,
rigides au sens précédent. En revanche, pour les surfaces minimales, Choi,

l) Les recherches du second auteur ont été partiellement soutenues par le CNPQ-Brésil
(subvention: 301003/90.4).
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Meeks et White on introduit récemment la notion de rigidité minimale,
rappelée plus bas [3]. Ces auteurs ont aussi établi des critères pour montrer
que certaines surfaces sont minimalement rigides. Ainsi le caténoïde est

une surface minimalement rigide, comme d'ailleurs toute surface minimale
à deux bouts (voir plus bas ou voir [3]). Par contre toute surface minimale
simplement connexe, dont la courbure de Gauss n'est pas identiquement nulle,
n'est pas minimalement rigide (voir théorème 1). Si la courbure de Gauss

d'une surface minimale complète est identiquement nulle, Osserman montre

que cette surface est un plan, elle est donc minimalement rigide [10]. Cette

rigidité minimale reste vraie pour une surface minimale connexe, avec

courbure de Gauss nulle et qui n'est pas nécessairement complète. En effet,
dans ce cas, la surface en question est un ouvert d'un plan et toute isométrie
entre ouverts plans connexes est une congruence. Remarquons qu'un plan est

minimalement rigide, sans être rigide (on peut le courber). Cette propriété
n'est pas spécifique au plan. Dans le chapitre d'exemples, nous donnons une
surface réglée isométrique et non congruente au caténoïde.

Notre premier objectif dans ce travail est de reformuler certains critères

de [3], d'en donner de nouvelles preuves, et d'en déduire quelques

conséquences non explicites dans [3]. L'une de ces conséquences est qu'une
surface minimale non orientable immergée isométriquement dans E3 est

minimalement rigide. Le résultat principal de [3] dit qu'une surface minimale

complète proprement plongée dans E3 qui possède plus d'un bout est

minimalement rigide. Nous en redonnons ici la démonstration dans le cas plus

simple où la courbure totale est finie. Récemment, Collin [5] a montré que cette

condition sur la courbure totale est équivalente à la finitude du type
topologique, ceci pour les surfaces minimales proprement plongées ayant au
moins deux bouts. Lorsqu'on considère des surfaces immergées il n'en va plus
de même. Nous exhibons dans le chapitre d'exemples un anneau minimal

complet, immergé dans E3, et qui n'est pas minimalement rigide.

2. Résultats

Nous convenons ici qu'une surface M est une variété riemannienne de

dimension deux qui est connexe, sans bord, séparée, à base dénombrable et

infiniment différentiable. Une surface n'est pas nécessairement complète. Deux
immersions isométriques /, g de M dans l'espace euclidien E3 de dimension

trois sont congruentes s'il existe une isométrie ^ de L3 telle que g A o /.
Une immersion isométrique f:M^>E3 est minimale si, pour tout p e M, il
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existe un voisinage ouvert V de p dans M tel que la restriction de / à V soit

un plongement et tel que la courbure moyenne de f(V) soit nulle. Une

surface M qui possède une immersion isométrique minimale f:M~+E3 est

minimalement rigide si toute autre immersion minimale isométrique de M
dans E3 est congruente à /. Le résultat fondamental de rigidité de Choi,

Meeks et White (théorème 1.2 de [3]) s'énonce comme suit.

Lemme fondamental [3]. Soit f une immersion isométrique minimale

d'une surface M dans E3. On suppose qu'il existe une courbe fermée
lisse par morceaux dans M, donnée avec un paramétrage y : [0, / ] -* M,

par abscisse curviligne, ainsi qu'un champ de vecteurs unités V: [0, /] E3

le long de y tangents à f (M) et normaux à y tels que

| * 0

Alors la surface M est minimalement rigide.

La démonstration de [3] est basée sur le théorème de classification de

Weierstrass des immersions isométriques minimales d'ouverts simplement
connexes plans munis de métriques conformes à la métrique euclidienne;

pour cette théorie, voir le livre de R. Ossermann [10], pages 30-52. Nous
reformulons ce résultat comme suit, et en donnons une preuve basée sur les

propriétés de la dualité de Hodge entre 1-formes d'une surface orientée.

Théorème 1. Soit M une surface orientée, avec courbure de Gauss

non identiquement nulle, et f une immersion isométrique minimale
de M dans E3. Alors la forme différentielle + df est exacte si et
seulement si f n'est pas minimalement rigide.

L'étoile * désigne la dualité de Hodge, de sorte que *df est une
1-forme sur M à valeurs dans E3. Cette forme est fermée si et seulement
si / est minimale. L'hypothèse d'orientabilité et de courbure de Gauss non
identiquement nulle, qui ne figure pas dans [3], est nécessaire ici pour l'énoncé
et la démonstration. Nous traitons à part les cas où la surface est non orientable
ou de courbure de Gauss nulle. De manière générale l'étude des immersions
isométriques minimales d'une surface non orientable se ramène à celle des

immersions isométriques minimales du revêtement orientable à deux feuillets
de la surface (cf. De Oliveira [9] ou Toubiana [12]). Nous avons le théorème
suivant.
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Théorème 2. Les surfaces minimales non orientables immergées
dans E3 sont minimalement rigides.

Quant aux surfaces minimales de courbure de Gauss nulle, leur rigidité
minimale se démontre directement et sans difficultés. Les théorèmes 1 et 2 sont
des conséquences de la proposition 3, qui caractérise les immersions

isométriques ayant même application de Gauss et courbure de Gauss presque

partout non nulle.

Proposition 3. Soit M une surface, orientable ou non, et f,f*
des immersions isométriques de M dans E3, qui ont même application de

Gauss. Si la courbure de Gauss de M est presque partout non nulle
dans M, l'angle entre les vecteurs df{p\tf) et df*{p\l,) dans E3

est indépendant de £, e TPM, % ^ 0, et de p e M.

Dans cet énoncé, TPM désigne l'espace tangent à M en p et df est

la différentielle de /. Remarquons que les vecteurs df(p; ^) et df*{p\Zf)
sont non nuls de sorte que l'angle entre ces vecteurs est bien défini. La
démonstration de la proposition 3 s'appuie sur deux lemmes qui traitent
successivement le cas orientable et le cas non orientable. Le théorème 1 nous
incite à chercher des critères géométriques qui garantissent la non-exactitude
de la forme différentielle * df. Nous élaborons deux critères, dont l'un figure
déjà dans [3]. Ces critères permettent d'aboutir au corollaire suivant.

Corollaire 5. Une surface minimale complète dans E3, qui est de

type topologique fini et possède au moins deux bouts3 est minimalement

rigide.

La démonstration utilise un résultat récent de Collin [5].

Finalement nous donnons deux exemples. Le premier montre la

non rigidité des caténoïdes et consiste en une surface réglée isométrique
et non congruente au caténoïde. Le second fournit une famille à un

paramètre d'immersions isométriques minimales non congruentes de

l'anneau R2/(w, v) ~ {u + 2kn, u) dans E3. Dans cet exemple l'anneau est

muni de la métrique:

- (1 + e~2au)2 e2{a~b)ü (du2 + dv2)
2
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où a et b sont des entiers fixés avec | a | > | b | > 0. La famille Zq(u, u),

0 g [0, 2ti [, est donnée par

Zq(u, v)

+ (ach au + bshav)

(behau + ash au)

sin (bu - 0)

(a2 - b2)

sin au

- cos au
0

cos (bu - 0)

(a2 - b2)

1

I cos au]
sin au

0

sin (bu - 0)
1°)

0 eb"

\l)

3. Démonstrations

Soit M une surface orientée et f'.M^E1 une immersion isométrique.

Nous définissons Vapplication de Gauss de /, notée G:M-> 5^2, en

posant:

G(p) Tpf(ex)ATpf(e2)

où (ex,e2) est une base orthonormée, positivement orientée de TPM
et Tpf est la dérivée de / en p. Dans cette définition désigne la

sphère unité centrée à l'origine dans l'espace euclidien et le symbole «a»

y représente le produit vectoriel. L'application G est ainsi associée à / et à

l'orientation de M. Un changement d'orientation de M a pour effet de

changer G en - G. Lorsque M n'est pas orientable nous définissons

l'application de Gauss comme étant l'application de M dans le plan

projectif .^2 qui associe à chaque p e M le sous-espace orthogonal
à Tp f(TpM) dans E\

L'application de Gauss et la courbure de Gauss de M sont intimement
liées. Pour le voir, prenons M orientée et convenons de noter com sa forme
volume. C'est par définition la 2-forme différentielle prenant la valeur 1 sur
tout repère orthonormé et positivement orienté, tangent à M. Par exemple la
forme volume de la sphère ^2, munie de l'orientation appropriée, est

donnée par co y,2 (p;u{, u2) det (p, i>2). La forme différentielle induite
de co y 2 par G sur M est une 2-forme différentielle, notée G^ 00^2, qui est

nécessairement du type KcoM où K est une fonction sur M. Cette fonction est

précisément la courbure de Gauss de M. On démontre que K(p) est aussi le
déterminant de l'application Tp G o (Tpf) ~1, considérée comme endo-
morphisme de Tpf(TpM) (remarquer que TG{p) 9P2 Tpf (TPM)). En
particulier si la courbure de Gauss est non nulle en p e M, l'application de
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Gauss est inversible au voisinage de p. La théorie de Weierstrass montre que
l'application de Gauss G est conforme, au voisinage d'un point de courbure
de Gauss non nulle, lorsque l'immersion isométrique / est minimale.

Rappelons qu'une application différentiable h\ M N entre variétés

riemanniennes (M, gM) et (TV, gN) est conforme si h ^gN X • gM où X est une
fonction positive. Il est équivalent de dire que la dérivée de h conserve la

mesure des angles.

Proposition 1. Soit M une surface orientée et f,f* deux immersions

isométriques dans E3. Si f et f* sont minimales, il existe une
rotation R de E3, telle que R ° f et f* ont même application
de Gauss.

Ainsi, lorsque / et /* sont minimales, elles ont même application de Gauss

à congruence près. La propriété, pour deux immersions isométriques /
et /*, d'avoir même application de Gauss n'implique généralement pas leur

congruence, notamment lorsqu'elles sont minimales. Par contre nous avons la

proposition suivante, essentiellement due à Darboux [7].

Proposition 2. Soit M une surface orientée et f,f* deux immersions

isométriques dans E3 dont les applications de Gauss coïncident.
Si en chaque point p e M la courbure moyenne de f ou de f* est non
nulle, les deux immersions f et f* sont congruentes.

Une démonstration de la proposition 2 est donnée dans l'annexe I.
Venons-en à la preuve de la proposition 1.

Preuve. Nous montrons d'abord que les applications de Gauss G et G*
associées à deux immersions isométriques minimales / et /* sont congruentes.
Si la courbure de Gauss de M s'annule partout les applications G et G* sont
constantes et l'affirmation est alors banale. Sinon la théorie de Weierstrass

montre que cette courbure ne s'annule que sur un ensemble fermé discret
de M. Alors la composée G* o G-1 définit une application conforme d'un
ouvert de S?2 sur un ouvert de .5^2. L'égalité

(G*) ^co
c/2 — KcoM — G#CÛ ^2

montre que l'application G* o G-1 conserve aussi la forme volume de 9?2.

Or une application conforme de la sphère qui préserve le volume est

nécessairement une isométrie et une telle isométrie est une rotation de ii3,
puisque l'orientation est conservée. Ainsi G* R o G où R est une rotation.
L'égalité est vraie dans tout M parce qu'elle est vraie dans un ouvert dense.
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Revenons à l'application f. Il est immédiat que R ° f est, comme f, une

immersion isométrique minimale de M et que son application de Gauss

égale R o G. Nous en déduisons que R ° f et /* ont même application

de Gauss.

Notre étude comparative d'immersions isométriques minimales d'une

surface M dans E3 s'appuie sur quelques notions de la théorie des singularités

d'applications différentiables entre surfaces, que nous allons maintenant

préciser. Un point singulier pour une application différentiable h:M~^N,
entre surfaces, est un point p e M où la dérivée Tp h n'est pas de rang
maximum. Un point singulier p est de type pli, respectivement de type cusp,
si dans des coordonnées locales convenables de M en p et de N en h(p),
l'application h est donnée par:

(x,y)^ (x2,y)

respectivement

(x, y) ^ (x3 - xy, y)

Une application h:M^N est 2-générique si elle n'admet que des points
singuliers de type pli ou de type cusp. Dans ce cas Y ensemble singulier E(/z)
est une sous-variété fermée de dimension un dans M et les points de type cusp
en forment un sous-ensemble fermé discret. Notons que hÇL(h)) n'est en

général pas une sous-variété de N.

Pour un vecteur unitaire z e E3 nous notons Ez le sous-espace des

vecteurs orthogonaux à z et nz la projection orthogonale de E3 sur Ez.
L'espace Ez est de dimension deux et si f'.M^E3 est une immersion

isométrique, nous pouvons affirmer que l'application nz o f de M dans Ez
est générique au voisinage de tout point de M où la courbure de Gauss est non
nulle, pour presque tout z. Observons qu'un point p e M est critique
pour n z

o / si et seulement si z e Tpf{TpM) c'est-à-dire si et seulement
si G(p) e Ez où G désigne l'application de Gauss de /. Ainsi pour toute
immersion isométrique f:M^E3 l'ensemble singulier de nz o f est donné

par E(7iz o /) G~l(Ez).
Nous noterons Zz(f) l'ensemble singulier de nz o /. En particulier

si / et /* sont deux immersions isométriques de M dans E3 avec même
application de Gauss, nous avons l'égalité

£,(/) !,(/*) pour tout zeS^2.
Lorsqu'aucune confusion n'est possible nous écrivons à la place de Ez(/).
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Soit U l'ensemble {p e M \ K{p) ^ 0}. C'est un sous-ensemble ouvert de M
et si / est une immersion isométrique minimale, U est soit vide, soit le

complémentaire d'un ensemble fermé discret. Dans tous les cas U n est

une sous-variété de dimension un de U quel que soit z e 9*2. Nous allons
d'abord montrer que la fonction

u n zz 3 P h> HP) ^ (/(£z), f*Vz))
est localement constante quel que soit ze ^2. Remarquons que cet angle est

par définition l'angle entre les vecteurs Tpf(Q et Tpf*(Q de E3, où Ç est

un vecteur unitaire tangent à en p. Nous en déduirons, sous certaines

hypothèses, que l'angle entre Tpf{&) et Tpf*(Z,) est indépendant de p
et de £ e TPM.

Adoptons la terminologie suivante. Soit M une surface et f:M~+E3
une application différentiable. Nous appelons différentielle extérieure de /
la forme différentielle df, de degré un dans M et à valeurs dans E3,
définie par

df(p; £) Tpf(£) pour p e M et £ e TPM

Proposition 3. Soit M une surface, orientable ou nony et f,f*
des immersions isométriques de M dans E3, qui ont même application de

Gauss. Si la courbure de Gauss de M est presque partout non nulle

dans M, l'angle entre les vecteurs df{p\ïf) et df^ip;^) dans E3

est indépendant de ^ e ^ 0, et de p e M.

La preuve s'appuie sur deux lemmes.

Lemme 1. Soit U une surface orientée de courbure de Gauss partout
non nulle et /, /* des immersions isométriques de U dans E3 ayant
même application de Gauss. Alors l'angle entre df{p\lf) et df^ip;^)
est indépendant de ^ e TPU et indépendant de p e U.

Preuve. Remarquons d'emblée que l'angle entre les vecteurs df(p\ £)
et df*{p\ïf) est indépendant de £,e TPU. En effet, pour tout peU
les dérivées, Tpf et Tpf *, de / et /* en p envoient TPU sur le même

sous-espace orienté de E3 et comme Tpf et Tpf * sont des isométries

qui préservent l'orientation, elles diffèrent par une rotation. Cet angle

£p{df{p\ £)> df*(p; £)) qui est indépendant de % e Tp U est appelé angle

entre entre df et df* en p et nous le notons zl p(df, df*). Il s'agit donc
de montrer que cet angle est indépendant de p.
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Soit z e S^2 tel que nz o / est générique et Ez son ensemble singulier.

Nous montrons d'abord que l'angle a p(df, df*) est localement constant

comme fonction de p e Tz. Soit y: [a, b] -» une paramétrisation locale

isométrique et considérons le cylindre paramétré

> y: [a, b] x R E3 défini par (t, u) K /(y(0) + •

L'application y est une immersion sauf le long des droites {^o} x R

C [a,b] xR pour lesquelles y (to) est un point cuspidal de Ez. Nous

pouvons donc trouver un partage de [a, b]

a < tx < t2 • • • < tn +1 ^ b

dont les points de partage correspondent par y aux points cuspidaux

de £z contenus dans y ([a, b]).
Le chemin nz o y: [L, L + il Ez est une immersion sauf aux extrémités

où la dérivée est nulle et ceci pour tout 1 ^ i ^ n. La forme locale

pour nz o /, au voisinage d'un point cuspidal, montre que l'image

\j/([L, L-m] x R) est un cylindre régulier Cz immergé dans E3 et qui se

projette orthogonalement sur la courbe c, tiz o y([t/5 L + il) C

Notons également cz: [s/,5/+i] Ez la paramétrisation de c, par l'abscisse

curviligne. Alors l'application

(\)/: l$i,si+i] xR^E3 définie par (s, u) cz(5) + uz

est une immersion isométrique sur C\ Désignons encore par C la réunion
des Ci. Son développement dans un plan fournit une bande Ft, dont le bord
est formé de deux droites parallèles, que nous pouvons supposer parallèles
à z. La courbe / o y | [ti9 ti+ J est une courbe lisse, tangente, en ses

extrémités, aux composantes du bord de Ft. En recollant la bande Ft à la
bande Fi+X le long de la composante du bord correspondant à \|/({L +1} x R)
de manière que Ft et Ft + se trouvent dans le même demi-plan défini par la
droite de recollement, on pourra prolonger le développement de

\|/([tf, /y] x R) en une application de C i|/([a, b] x R) dans le plan, qui est

une isométrie dans chacune des bandes Cz Par cette isométrie la partie
\|f([a,b] x {0}) est envoyée sur une courbe lisse C2. Une construction
analogue avec /* à la place de / fournit un cylindre C* b] x R)
qui peut être appliqué dans le plan, comme avant, par une isométrie sur
chaque bande C* et tel que y*(!>>&] x {0}) est envoyé sur une courbe
lisse C2.

Notons X et X* ces courbes planes lisses C2, paramétrées par l'abscisse
curviligne. Pour chaque /, les courbures de X et X* dans ]/, /+1[ coïncident
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parce que la courbure géodésique de y | ]ti9ti+1[ dans U égale celle
de / » y | ] tif ti+ [ dans le cylindre C, et celle de /* o y | ] ti9 ti + x[ dans le

cylindre C f.
Nous savons en effet que si deux surfaces dans E3 sont tangentes le long

d'une courbe lisse, la courbure géodésique de cette dernière est la même dans

chacune des deux surfaces ([2], p. 249). Les deux surfaces sont orientées et les

orientations coïncident le long de la courbe de contact.
Or ces cylindres sont isométriques aux bandes Fi et Ff, par des isométries

qui envoient / ° y | ] ti9 ti+1 [ sur X et /* ° y | ] ti9 ti+1[ sur X*
respectivement. Comme X et X* sont des chemins C2 de [a, b] dans E2, paramétrés

par l'abscisse curviligne, nous en déduisons que X et À,* ont partout même

courbure et diffèrent par une isométrie de E2.
En particulier l'angle entre les vecteurs vitesses X'(t) et X* '(t) est constant.

Mais ces vecteurs vitesses égalent respectivement et

df*(y(t);y'(t)). De là on déduit alors que l'angle zyit)(df, df*) est une
fonction constante de t. Pour voir que l'angle z. p(df, df*) est une fonction
constante de p dans U, il suffit, en vertu de la connexité de U, de remarquer
qu'il est localement constant. Or cela est bien vrai puisque G est un
difféomorphisme local et par suite deux points suffisamment voisins dans U

peuvent être approximés par des points situés sur des lignes de pli pour
des z convenables (i.e. nz o / générique). Ceci termine la démonstration
du lemme 1.

Corollaire 1. Soit M une surface orientée et f,f* des immersions

isométriques de M dans E3, avec même application de Gauss. Si
la courbure de Gauss de M est presque partout non nulle dans M,
l'angle Ap(df,df*) est indépendant de p.

Ce corollaire résulte immédiatement du lemme précédent par continuité de

cet angle. En effet, dire que la courbure de Gauss est presque partout non nulle
c'est dire qu'elle est non nulle dans un ouvert dense de M.

Lemme 2. Soit M une surface non orientable et /, /* des

immersions isométriques de M dans E3, avec même application de

Gauss. Si la courbure de Gauss de M est presque partout non nulle
dans M, l'angle z.p(df,df *) est indépendant de p.

Preuve. Le revêtement orientable à deux feuillets de M est une surface
A

orientable M avec une projection de revêtement n de M sur M qui est
A

localement une isométrie. Orientons M. Alors f o % et /* o ^ sont des

immersions isométriques de M dans E3, avec même application de Gauss.
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Le corollaire précédent montre que l'angle Ap(d(f o 7i), £/(/* 0 n)) est

indépendant de p. Mais c'est aussi l'angle z n(p) (df, rf/*). De la surjectivité
de 71 nous en déduisons que l'angle z q(df, df*) est indépendant de

q e M.

Preuve de la proposition 3. Elle résulte immédiatement des lemmes 1 et 2

ainsi que du corollaire 1.

Voyons comment reformuler le lemme fondamental dans le langage des

formes différentielles. Soit M une surface orientée. Nous pouvons associer à

tout £, e TpMle vecteur e TpM, orthogonal à £, et de même norme et tel

que, pour é, =£ 0, la base (£, £,) fournit l'orientation donnée de TPM. La

correspondance £ *£, est alors une rotation de T^M et **£, -
En fait on peut montrer que la structure conforme, sous-jacente à la

métrique riemannienne, et l'orientation définissent une structure complexe

sur M. Pour cette structure l'opération £, n'est autre que la multiplication

par /. A l'aide de cette opération nous définissons la forme différentielle
suivante

+ df(p; Ç) df(p; *£) pour p e M et £ e TpM

C'est une 1-forme dans M à valeurs dans E13. Dans le cas où / est une
immersion isométrique, nous pouvons observer que pour chaque p e M et

chaque vecteur unitaire £ e TpM, la base (df{p; £), +df(p\ £), G(/?)) est

orthonormée et définit l'orientation canonique de E13. Il en résulte que

+ df(p \ £) G(p) Adf(p\ £,) pour tout p e M et tout £ e TpM

Plus brièvement nous pouvons écrire

*6// G Adf
Un calcul direct, par exemple dans des coordonnées conformes, montre que

d * df 2Hcom

où coM est la forme volume de M et H H • G est le vecteur courbure
moyenne, produit de la courbure moyenne H et de l'application de Gauss.
En particulier la forme *d/ est fermée, c'est-à-dire de différentielle nulle, si
et seulement si / est minimale.

Théorème 1. Soit M une surface orientée, avec courbure de Gauss
non identiquement nulle, et f une immersion isométrique minimale
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de M dans E3. Alors la forme différentielle -kdf est exacte si et
seulement si f n'est pas minimalement rigide.

Preuve. Supposons que -kdf ne soit pas exacte et soit /* une autre
immersion isométrique minimale de M dans E3. A une congruence près nous

pouvons supposer que / et /* ont même application de Gauss. Alors nos
hypothèses garantissent que l'angle a entre df(p; Ç) et df*(p;£,) est

constant, indépendant de peM et £ e TPM. Comme G G* nous
savons que le vecteur df*(p;£,) est dans le sous-espace Tpf{TpM) dont
(df(P'>£>)> *df(p; £)) est une base orthonormée, si £, est unitaire. Ainsi

df*{p\ Ç) cos a df(p; £) + sin a kdf(p; Ç) pour tout p e M
et tout £ e TPM

Plus brièvement nous écrivons

df* cos a df + sin a +df
Alors, a étant constant, nous pouvons écrire

d(f* - cos a f) sin a irdf
En particulier si sin a ^ 0 la forme -kdf est nécessairement exacte.

Donc, comme -kdf n'est pas exacte nous avons a 0 ou a n. En

remplaçant éventuellement / par -/, ce qui ne change pas la classe de

congruence, nous pouvons supposer a 0. Dans ce cas les deuxièmes formes
fondamentales II - <dG,df> et II* - <dG*, df* > coïncident

en chaque point de M car df df* et dG dG*. Par ailleurs les

premières formes fondamentales coïncident puisque / et f* sont des

isométries. Ainsi dans ce cas f et f* sont congruentes, de sorte que / est

minimalement rigide.
Réciproquement si -kdf est exacte il existe une application §\M-+E3

telle que d§ +df. Pour chaque a e R nous pouvons considérer

l'application

M 3 p^ cos af (p) + sinac|>(p) ga(p) •

Cette application est nécessairement une immersion isométrique minimale. En

effet, c'est une immersion car dga (p; £) df(p; cos aÇ + sin a(*Ç))
et ce dernier vecteur est unitaire pour tout vecteur unitaire £, e TPM. Cette

même égalité montre aussi que l'immersion ga est une isométrie. Vérifions

qu'elle est bien minimale. Or nous avons:

*dga cos ad(\> - sin adf
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Il en résulte que +dga est exacte et donc aussi fermée, ce qui est équivalent
à dire que l'immersion isométrique ga est minimale. Nous avons ainsi

toute une famille à un paramètre d'immersions isométriques minimales

contenant /. De plus toutes ces immersions ont même application de Gauss,

par construction. Comme l'image de M par cette application de Gauss est

d'intérieur non vide dans 5^2, les seules isométries de E3, qui par
composition avec / fournissent des isométries ayant même application de

Gauss, sont les translations. Cela signifie que si les applications ga étaient

congruentes à / elles devraient l'être par des translations. Or ceci est

certainement absurde puisque df =£ dga. Ainsi / n'est pas minimalement
rigide.

Remarquons que la non exactitude de +df est équivalente à l'existence
d'un chemin fermé y, lisse par morceaux, tel que

| +df =£ 0

Par ailleurs il est remarquable que parmi les immersions isométriques
minimales, ce type de déformations soit le seul possible, à congruence près.
Plus précisément nous avons le corollaire suivant.

Corollaire 2. Soit M une surface orientée et f:M^E3 une
immersion isométrique minimale. Supposons +df d$. Alors toute
immersion isométrique minimale /* de M dans E3 s'écrit, à

congruence près, sous la forme

f* cos af + sin a0

avec a e [0, 27t [

Preuve. Nous pouvons supposer M de courbure de Gauss non
identiquement nulle. Alors le théorème 1 montre que

df* cos a df + sin a dfy

avec a g [0, 27t [ constant. Il en résulte que df* (cos af + sin ach). Ainsi,
par connexité de M, les immersions f* et cos a/ + sinac|> diffèrent d'un
vecteur constant dans E3. D'où l'égalité cherchée, à congruence près.

Soit M une surface non orientable et soit M son revêtement orientable à
deux feuillets. Nous le munissons d'une orientation. Soit 7t : MM la
projection de revêtement. Tout chemin y : [a, b] M admet un relèvement
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y : [a, b] -> M c'est-à-dire un chemin tel que n o y y. Nous avons alors le

corollaire suivant qui se déduit de la proposition 3.

Corollaire 3. Soit M une surface non orientable avec courbure de

Gauss non nulle dans un ouvert dense et f,f* des immersions isométriques
de M dans E3, avec même application de Gauss. S'il existe un chemin

fermé y dans M tel que

+ d{f o n) 0
i y

alors f et f* sont congruentes.

Preuve. Les applications h f o n et h* f*on sont des immer -
A

sions isométriques de M dans E3, avec même application de Gauss. Nos

hypothèses impliquent que la courbure de Gauss de M est non nulle dans un
ouvert dense. Nous en déduisons que l'angle entre dh(p) et dh*(p) est

indépendant de p. Notons le a. Soit y : [a, b] -> M un chemin fermé tel que

irdh ^ 0 où y est un relèvement de y
y

Remarquons que y n'est pas nécessairement fermé. Comme dans la
démonstration du lemme fondamental nous avons:

dh* cos a 1 dh + sin a 1 -kdh
y J y <J

Y

or

dh* h*(y(b)) - h*(y(a))f*(y - f*(y(a)) 0

De même

dh 0 et ainsi sin a 1 -kdh 0

V J Y

Donc a 0 ou a n et nous pouvons en déduire que les immersions h

et A* sont congruentes. Par surjectivité de n il en résulte que / et / * diffèrent

par une isométrie de E3.

Théorème 2. Soit M une surface non orientable et f,f* des

immersions isométriques minimales de M dans E3. Alors f et /*
sont congruentes.
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Preuve. Comme M est non orientable, la courbure de Gauss de M
n'est pas identiquement nulle. Par minimalité de l'immersion isométrique / il
s'en suit que la courbure de Gauss est non nulle dans un ouvert dense. A

congruence près nous pouvons supposer que / et /* ont même application
de Gauss.

Si / et /* n'étaient pas congruentes, nous aurions la relation

j +d(f on)0

pour tout chemin fermé y dans M et tout relèvement y de y, dans le

revêtement orienté à deux feuillets M de M. Comme auparavant nous

avons noté tc:M^> M la projection de revêtement. Posons h / o 71 et

h* f* on. Alors la condition

-kdh 0

Y

A

implique que -kdh d\\f où \jf.M^E3 est une application différentiable
A

telle que \j/(x) \|/(*') pour tout x, x' eM avec n(x) n(x'). Nous en

déduisons que \j/ $ o 71 où 0 : M E3 est différentiable.
Considérons les éléments de E3 comme des matrices diagonales d'ordre

trois. Nous avons alors la 2-forme différentielle, à valeurs réelles,

Tr{dh a +dh) (p ; £,, r|)
Tr(dh{p\4)(t kdh(p-r\))- (+dh(p; Ç)))

A

C'est une 2-forme dans M qui égale - 2com, où cûm est la forme volume
de M. En particulier elle est partout non nulle. Mais elle est induite
par n d'une 2-forme de M. En fait

Tr(dh a +dh) n
^ Tr(df a ûù|))

Ainsi, par surjectivité de n, la 2-forme différentielle Tr(df a dty) est partout
non nulle dans M. Or l'existence d'une telle forme est équivalente à l'orien-
tabilité de M. Ceci est contraire à l'hypothèse.

Revenons au cas d'une surface orientée M et d'une immersion isométrique
minimale f:M~+E3. Le théorème 1 montre qu'il est intéressant d'avoir des
critères géométriques qui garantissent la non-exactitude de *<//. C'est ce que
nous allons examiner brièvement.
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Critère A. Pour chaque z g 5^2 nous considérons la fonction hauteur

hz:M-+R définie par M 3 hz(p) <f(p),z>, où < > désigne
le produit scalaire dans E3. Si la courbure de Gauss de M n'est pas
identiquement nulle, ce que nous supposons pour la suite, l'image de hz est un
intervalle d'intérieur non vide. En particulier nous pouvons choisir une
valeur régulière ce R avec h~l(c) non vide. L'ensemble N h~l(c) est

alors une sous-variété de dimension 1 de M. Soit p e N et ^ e TPN un
vecteur unitaire. Alors

dhz(p; £) 0 <df(pi%),z>
et comme c est une valeur régulière, p n'est pas critique en sorte que
dhz(p; *Ç) *0.
Ainsi

<*df(p;Z>),z> *0Vp eN et Ç e TPN, Ç * 0

En particulier si N possède une composante connexe compacte,
cette composante pourra être paramétrisée par un chemin fermé lisse

y : [a, b] N C M et en vertu de ce qui précède < +df(y(tyiy'(t)),z>
est non nul pour tout te [a, b]. Il en résulte que

| +df* 0.

Nous en déduisons que -kdf n'est pas exacte et par suite, que / est mini-
malement rigide.

Corollaire 4. Une surface minimale complète dans E3, qui est

de type topologique fini et possède au moins deux bouts, est minimalement
rigide.

Preuve. Par un résultat de Collin [5], de telles surfaces sont de courbure
totale finie. Or on sait que pour une surface minimale complète de courbure
totale finie, l'application de Gauss converge lorsqu'on s'approche d'un
bout [10]. Ces valeurs limites pour les différents bouts sont toutes colinéaires

parce que la surface est plongée. Soit z e l'une de ces valeurs limites.
Le comportement asymptotique des bouts montre que la fonction hz

converge ou tend vers l'infini lorsqu'on s'approche d'un bout (voir [11]). En
choisissant une valeur régulière pour hZi distincte d'une de ces valeurs

limites, on obtient une image réciproque compacte et non vide. Le critère A
ci-dessus établit alors la rigidité minimale de la surface.



UN THÉORÈME DE RIGIDITÉ 171

Critère B. Avec les notations de la proposition 1, considérons cette fois

la composée nz ° f* C'est une application 2-générique de M dans le

plan Ez pour presque tout z e 2 et en fait pour tout z si la courbure de

Gauss de M est partout non nulle. Lorsque l'ensemble des points

singuliers de nz o f possède une composante connexe compacte et que

y: [a, b] ^ M est une paramétrisation d'une telle composante, nous

considérons le partage

a < t\ < t2 < " ' < tn < b

tel que les points y(C) sont les points de type cusp de la composante
de considérée. Notons s, le signe de la fonction

P(0 - <zaG(y(0), tf/(y(0; Y'(0)> pour t e ]ti, ti+1[

Alors l'intégrale j <+df,z> égale la somme alternée des longueurs

l(nz ° f ° Y([ti, ti+ il)). Nous appelons cette somme alternée la longueur
algébrique de la composante nz o / oy{[a,b]) du contour apparent. En

particulier si cette longueur algébrique est non nulle, l'intégrale est non nulle
et la forme *é// n'est pas exacte. Il est ainsi possible, dans certains cas de

voir la rigidité d'une immersion isométrique minimale f:M^E2 à partir
d'une projection générique de /(M).

Explication. Nous pouvons supposer le chemin y lisse et en remplaçant
éventuellement z par - z que p(t) ^ 0 pour tout t e [a, t{] et t e [tn, b].
Chaque fois que nous passons un point de type cusp la fonction p s'annule
et change de signe. C'est-à-dire, £/+i= - s/ pour z= et en

convenant que + { 1. Cela résulte de la forme locale standard de la
surface /(M) au voisinage d'un point cuspidal. Par ailleurs nous savons

que la forme différentielle -kdf est liée à df et à l'application de Gauss G
de / par la relation: +df(p; Ç) G(p) Adf(p; ^). Il en résulte que

< +df(p;£,), z > det (G(p), df(p;i,), z)<z/\G(p),df(p\l,)>
Comme l'application nz est linéaire nous avons

< *df(p;ï,),z> <zaG(p)o /) (p;ï,)>
Lorsque p y (t)en'est pas un point cuspidal, le vecteur zaG(y(/))
est unitaire et tangent au contour apparent y([a,b]) au point
^(/(y(0)) et si £, y '(t) l'expression <+df(p-,ï,),z> égale p(t).
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Mais le chemin nz o f o y est précisément une paramétrisation d'une composante

du contour apparent et par le choix de z nous pouvons affirmer que

< *rf/(Y(0; y'(0).z> p(0 =(- D'il (Kz° f ° Y)'(D II

W [ti,ti]

Cette égalité reste vraie en un point cuspidal où les deux membres valent zéro.

Par définition de la longueur algébrique de nzo f o y nous avons alors

*df Ê (-D'A^z ° / 0 Y I [D, D+i]) • O
/= 1

Observons que n est toujours pair et que par convention nous avons noté

l(nz ° f ° J \ [tn, tn + i]) la somme de longueurs l(nz ° f ° Y \ [a, t{])
+ l(nzo f °y | [tn,b]).

De ces considérations il résulte immédiatement que si pour un z e 2

avec nz o f générique, l'ensemble singulier Yz possède une composante
connexe sans points cuspidaux, l'immersion / est minimalement rigide.

4. Exemples

Exemple 1. Non rigidité des caténoïdes.

Rappelons que les caténoïdes sont les seules surfaces de révolution
minimales et complètes, voir Hildebrandt [8]. Ils sont obtenus par rotation
d'une chaînette autour d'un axe. Si nous prenons pour axe de rotation
l'axe des z, les caténoïdes sont tous engendrés par la rotation des chaînettes

x — cl ch contenues dans le plan 0XZ. Chaque caténoïde peut, après

translation, être paramétré par

Xa (s, u) (a chu cos s, a chu sin s1, au)

Le changement de paramètre (s, v) (s, sh u) définit une nouvelle
paramétrisation

Ya (s, u) (a ch(argsh v) cos s, a ch(argsh u) sin s, a argsh u)

et dans cette paramétrisation les coefficients de la première forme
fondamentale sont gn a2(l + u2)fgi2 0 et g22 a2 •

Construisons maintenant une surface réglée de E3 isométrique et non

congruente au caténoïde.
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Il existe [13] des courbes fermées de E3 de longueur arbitraire, de

courbure non nulle dont la torsion est constante et égale à un. Montrons que

l'image par une homothétie de E2 de rapport a de la «surface» des

binormales d'une telle courbe y de longueur 2tt définit une immersion de

l'anneau R2/(s, ~ (s+2n,v) dans E2 qui est isométrique au caténoïde

(comme surface paramétrisée). L'immersion dont l'image est la «surface»

des binormales est donnée par

Za(s, u) a (y (s) + ub(sj)

s étant l'abscisse curviligne de y et b(s) désignant la binormale à y en y (s). Les

coefficients de la première forme fondamentale sont gü û2(1 +^2),
gi2 0 et g22 a2.

Ainsi, les deux immersions Ya et Za, que nous venons de construire,

induisent la même métrique riemannienne sur l'anneau R2/(s, v) ~ (s + 2n, u),

à partir de la métrique euclidienne de E3. Cela signifie que Ya et Za

sont des immersions isométriques de l'anneau muni de cette métrique
induite. Un calcul direct montre que la courbure moyenne de Za égale

H (s, u) \ y (5) \/ a\/\ + u2. Comme y est de courbure non nulle,
l'immersion Za n'est pas minimale et ne saurait donc être congruente à Ya.

Exemple 2. Surface minimale immergée, complète, non simplement
connexe et non minimalement rigide.

Nous considérons, dans ce qui suit, des immersions dans E3, d'un
domaine simplement connexe D C C. Il est alors sous-entendu que D est muni
de la métrique riemannienne induite par cette immersion à partir de la métrique
euclidienne de E2, de sorte que cette immersion est toujours une isométrie.
Soient / et g des fonctions, avec g méromorphe non identiquement nulle
et / holomorphe non nulle excepté aux pôles de g, où l'ordre du zéro
de / égale l'ordre du pôle de g2. Alors pour toute paire de telles fonctions,
la représentation de Weierstrass fournit une immersion isométrique minimale
de D dans E2, donnée par la formule

Îw ®(z)dz
w0

où C3 est l'application <ï> (^/(l - g2), {f(l + g2), fg) et l'inté-
grale est effectuée sur un chemin quelconque joignant w0 à w.



174 O. BURLET ET F. HAAB

L'immersion adjointe X* de X est la partie imaginaire de l'application a
de D dans C3, définie par

aO) 1 <$>{z)dz
«J W0

L'immersion X* induit dans D la même métrique riemannienne que X, de plus
elle est minimale. Plus généralement pour tout 0 e R, l'application

Zq(w) Re(e~iBa(w)) cosQX(w) + sin0X*(w)

fournit une immersion qui induit dans D la même métrique riemannienne

que X et qui est minimale. Explicitement cette métrique dans D est donnée par

ds2 - | / |2 (1 + | g |2)21 dz |2
2

La fonction méromorphe g:D-+ C égale la projection stéréographique de

l'application de Gauss associée à Ze, elle est donc indépendante de 0.

La courbure de Gauss est donnée par

K= -(
|

V-
ll/l(i + kl2)2/

Construisons maintenant un exemple de surface minimale immergée,

complète, non simplement connexe et non minimalement rigide. Prenons

D C, g(z) - ieiaz et f(z) - iei{b~a)z, avec a, b e Z et | a | > | b | > 0.

Les immersions minimales associées sont données par

cos {bu
(b ch au + a sh av)Zq {u, V)

sin (bu - 0)
+ (a ch au + b sh au)

(a2-b2)

Les immersions minimales Ze (u, u) : R2 R3, 0 e [0, 27c), définissent des

immersions isométriques minimales Ze de l'anneau R2/(w, v) ~ (u + 2kn, v)

dans E3 non congruentes entre elles. Ces immersions isométriques ne

possèdent pas de points singuliers car C est muni de la métrique induite

ds2 — - (1 + e~2au)2e2^a~b)u > 0
2
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Observons que C muni de cette métrique est complet car

ds2(u + iu) - (e2^-b^v + 2e~bu + ei-a~b^) (du2 + du2)
2

tend vers + oo si u ± oo vu que | a \ > \ b \ > 0. Finalement la courbure

totale de Z0 est égale à 4an car l'application g, composée de

l'application de Gauss et de la projection stéréographique est égale à

g{u,v) e~au(sin au, - cos au).
Nous avons donc construit une immersion isométrique minimale X sans

points singuliers d'un anneau complet de courbure totale - 4an, a ^ 2,

qui n'est pas minimalement rigide. On peut observer que X possède un bout

planaire et un bout de type Enneper. Les figures ci-après représentent
différentes étapes de la déformation isométrique de l'immersion minimale X
en l'immersion isométrique minimale adjointe X*. La figure 1 représente
la trace du domaine {(m, u) \ 0 ^ u ^ 2tc0 ^ v ^ 1}. Les figures 2 à 5

représentent la trace du domaine précédent par les immersions isométriques
ZQ avec 0 7i/8, tt/4, 3n/8, n/2. Toutes ces surfaces sont vues depuis une
direction parallèle à (-1, -2, -1).
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Figure 4 Figure 5

Annexe I

Nous allons démontrer ici la proposition suivante:

Proposition 2. Soit M une surface orientée et f,f* deux immersions

isométriques dans E3 dont les applications de Gauss coïncident. Si en

chaque point p e M la courbure moyenne de f ou de f* est non nulle,
les deux immersions f et f* sont congruentes.

Preuve. Rappelons qu'en chaque point p e M nous avons les formes
fondamentales suivantes, définies sur TPM:

<TPm), T„f(t\)>

IIP{Ï;,ti)- <T,G(Z,),Tpf(n
IIIp(k,ï\) <TPG(Ï),n)>

Rappelons brièvement que courbure moyenne et courbure de Gauss en p sont
reliées à G et à / par les formules

H{p) l-Tx{TpGo{Tpf)-')

K(p)= det(TpG o (Tpf)~l)

L'application TpGo(Tpf)~l est un endomorphisme linéaire de l'espace
vectoriel G(p)L Tp f(TpM), H(p) est la courbure moyenne de / en p
et K{p) sa courbure de Gauss en p. Les formes fondamentales de f en p
vérifient l'identité

IIIP (Ç, q) + 2H(p)IIp (Ç, q) + K(p)IPtt, q) 0

Notons /*,//*,///*,//*, G*,K* les objets analogues définis pour /*.
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Comme / et /* sont des immersions isométriques nous avons Ip I* et

K K*, et comme G G* nous avons aussi IIIP III* pour tout p e M.
Les endomorphismes TPG o (Tpf)~l et A* Tp G* o (Tpf*)~x sont

auto-adjoints et sont donc représentés par des matrices symétriques dans une

base orthonormée de G(p)±. Nous pouvons écrire A* o Rp Ap où

RP Tpf*o (Tp f) ~1 est une rotation, vu que / et f* sont des isométries

avec même application de Gauss. Soit son angle de rotation avec

- 7i < < n. Par symétrie de A et A* nous avons

Tr(A*R) TrA * cos 0 TrA et Tr (AR~l) TrA cos Q TiA*

D'où les formules

H* cos 0 7/ et H cos 0 H*

Nous en déduisons que H* cos2(0)//* et H - cos2(0)/7, et avec nos

hypothèses, H ou H* non nuls en chaque point, nous pouvons conclure que

0^ 0 ou 0^ 7i, pour tout p. Par connexité de M la fonction p^ Qp est

constante, égale à 0 ou n. En remplaçant éventuellement /* par -/*, ce qui
ne change pas la classe de congruence de /*, nous pouvons supposer 0P 0

pour tout p. Ainsi H H*. Alors les identités entre les formes fondamentales
et le fait que H soit partout non nulle, impliquent l'égalité des deuxièmes

formes fondamentales II II*. Tenant compte du fait que G G*, la théorie
locale des surfaces montre alors que /* to / où t est une translation de

E3. En fait l'application p (f*(p) - f(p)) est localement constante donc
constante par connexité de M. En d'autres termes / est congruente à / *.
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