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UN THEOREME DE RIGIDITE
POUR LES SURFACES MINIMALES DE E3

par Oscar BURLET et Frangois HAAB'!

1. INTRODUCTION

Le probléme de la rigidité des surfaces (sous-variétés de dimension deux)
dans I’espace euclidien E? consiste & savoir dans quelle mesure deux surfaces
peuvent étre isométriques, sans que cette isométrie soit réalisée par une
isométrie globale de E3. Pour des raisons pratiques, nous appelons
congruence une isométrie globale de E3 et nous disons que deux surfaces sont
congruentes si elles se correspondent par une congruence. La question que
nous nous posons est donc de savoir si une surface donnée dans E? est la
seule, a congruence prés, qui lui soit isométrique? Si la réponse est oui, nous
dirons qu’elle est rigide.

L’un des résultats les plus anciens dans cette direction est probablement
le théoréme de Cauchy qui affirme qu’une surface polyédrale convexe est
rigide. En ce qui concerne les surfaces lisses qui nous préoccupent ici, on
peut mentionner le théoreme de Cohn-Vossen [4], qui affirme que deux
surfaces analytiques, convexes et compactes qui sont isométriques sont
nécessairement congruentes. Ce résultat a été étendu, par Herglotz au cas
des surfaces trois fois continument différentiables (C?3). Il s’avére qu’il est
encore vrai dans le cas des surfaces C? mais qu’il est faux dans le cas des
surfaces C!, voir Connelly [6]. Par ailleurs un résultat d’Alexandroff [1]
affirme que si deux surfaces analytiques tendues, dans E3, sont isométriques
elles sont congruentes (une surface dans E3 est dite fendue si tout plan
de E? la divise en au plus deux composantes connexes).

Rappelons qu’une surface est dite minimale si sa courbure moyenne est
nulle. A notre connaissance on ne sait pas s’il existe des surfaces minimales,
rigides au sens précédent. En revanche, pour les surfaces minimales, Choi,

1Y Les recherches du second auteur ont été partiellement soutenues par le CNPQ-Brésil
(subvention: 301003/90.4).
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Meeks et White on introduit récemment la notion de rigidité minimale,
rappelée plus bas [3]. Ces auteurs ont aussi établi des critéres pour montrer
que certaines surfaces sont minimalement rigides. Ainsi le caténoide est
une surface minimalement rigide, comme d’ailleurs toute surface minimale
a deux bouts (voir plus bas ou voir [3]). Par contre toute surface minimale
simplement connexe, dont la courbure de Gauss n’est pas identiquement nulle,
n’est pas minimalement rigide (voir théoréme 1). Si la courbure de Gauss
d’une surface minimale compléte est identiquement nulle, Osserman montre
que cette surface est un plan, elle est donc minimalement rigide [10]. Cette
rigidité minimale reste vraie pour une surface minimale connexe, avec
courbure de Gauss nulle et qui n’est pas nécessairement compléte. En effet,
dans ce cas, la surface en question est un ouvert d’un plan et toute isométrie
entre ouverts plans connexes est une congruence. Remarquons qu’un plan est
minimalement rigide, sans €tre rigide (on peut le courber). Cette propriété
n’est pas spécifique au plan. Dans le chapitre d’exemples, nous donnons une
surface réglée isométrique et non congruente au caténoide.

Notre premier objectif dans ce travail est de reformuler certains criteres
de [3], d’en donner de nouvelles preuves, et d’en déduire quelques
conséquences non explicites dans [3]. L’une de ces conséquences est qu’une
surface minimale non orientable immergée isométriquement dans E3 est
minimalement rigide. Le résultat principal de [3] dit qu’une surface minimale
compléte proprement plongée dans E3 qui possede plus d’un bout est
minimalement rigide. Nous en redonnons ici la démonstration dans le cas plus
simple ou la courbure totale est finie. Récemment, Collin [5] a montré que cette
condition sur la courbure totale est équivalente a la finitude du type
topologique, ceci pour les surfaces minimales proprement plongées ayant au
moins deux bouts. Lorsqu’on considére des surfaces immergées il n’en va plus
de méme. Nous exhibons dans le chapitre d’exemples un anneau minimal
complet, immergé dans E3, et qui n’est pas minimalement rigide.

2. RESULTATS

Nous convenons ici qu’une surface M est une variété riemannienne de
dimension deux qui est connexe, sans bord, séparée, a base dénombrable et
infiniment différentiable. Une surface n’est pas nécessairement complete. Deux
immersions isométriques f, g de M dans I’espace euclidien E£*® de dimension
trois sont congruentes s’il existe une isométrie A de E3 telle que g = A © f.
Une immersion isométrique f: M — E?3 est minimale si, pour tout p € M, il
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existe un voisinage ouvert ¥ de p dans M tel que la restriction de f a V soit
un plongement et tel que la courbure moyenne de f(V) soit nulle. Une
surface M qui posséde une immersion isométrique minimale f: M - E3 est
minimalement rigide si toute autre immersion minimale isométrique de M
dans E? est congruente & f. Le résultat fondamental de rigidité de Choi,
Meeks et White (théoréme 1.2 de [3]) s’énonce comme suit.

LEMME FONDAMENTAL [3]. Soit f une immersion isométrique minimale
d’une surface M dans E3. On suppose qu’il existe une courbe fermée
lisse par morceaux dans M, donnée avec un paramétrage v:|[0,1] > M,
par abscisse curviligne, ainsi qu’un champ de vecteurs unités V:[0,/] = E3
le long de v tangents a f(M) et normaux @ vy tels que

/
S V(s)ds # 0 .

0

Alors la surface M est minimalement rigide.

La démonstration de [3] est basée sur le théoréme de classification de
Weierstrass des immersions isométriques minimales d’ouverts simplement
connexes plans munis de métriques conformes a la métrique euclidienne;
pour cette théorie, voir le livre de R.Ossermann [10], pages 30-52. Nous
reformulons ce résultat comme suit, et en donnons une preuve basée sur les
propri¢tés de la dualit¢é de Hodge entre 1-formes d’une surface orientée.

THEOREME 1. Soit M une surface orientée, avec courbure de Gauss
non identiquement nulle, et [ une immersion isométrique minimale
de M dans E3. Alors la forme différentielle % df est exacte si et
seulement si f n’est pas minimalement rigide.

L’étoile * désigne la dualité de Hodge, de sorte que % df est une
I-forme sur M a valeurs dans E3. Cette forme est fermée si et seulement
st f est minimale. L hypothése d’orientabilité et de courbure de Gauss non
identiquement nulle, qui ne figure pas dans [3], est nécessaire ici pour I’énoncé
et la démonstration. Nous traitons a part les cas ou la surface est non orientable
ou de courbure de Gauss nulle. De maniére générale I’étude des immersions
isométriques minimales d’une surface non orientable se rameéne a celle des
immersions isométriques minimales du revétement orientable a deux feuillets

de la surface (cf. De Oliveira [9] ou Toubiana [12]). Nous avons le théoréme
suivant.
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THEOREME 2. Les surfaces minimales non orientables immergées
dans E?* sont minimalement rigides.

Quant aux surfaces minimales de courbure de Gauss nulle, leur rigidité
minimale se démontre directement et sans difficultés. Les théorémes 1 et 2 sont
des conséquences de la proposition 3, qui caractérise les immersions
isométriques ayant méme application de Gauss et courbure de Gauss presque
partout non nulle.

PROPOSITION 3. Soit M wune surface, orientable ou non, et f,f*
des immersions isométriques de M dans E?3, qui ont méme application de
Gauss. Si la courbure de Gauss de M est presque partout non nulle
dans M, [angle entre les vecteurs df(p;&) et df*(p;&) dans E?
est indépendant de & e€ T,M, & + 0, etde pe M.

Dans cet énoncé, 7, M désigne I’espace tangent a M en p et df est
la différentielle de f. Remarquons que les vecteurs d f(p; &) et df*(p; &)
sont non nuls de sorte que 1’angle entre ces vecteurs est bien défini. La
démonstration de la proposition 3 s’appuie sur deux lemmes qui traitent
successivement le cas orientable et le cas non orientable. Le théoréme 1 nous
incite a chercher des criteres géométriques qui garantissent la non-exactitude
de la forme différentielle % d f. Nous élaborons deux criteres, dont I’un figure
déja dans [3]. Ces critéres permettent d’aboutir au corollaire suivant.

COROLLAIRE 5. Une surface minimale complete dans E3, qui est de
type topologique fini et posséde au moins deux bouts, est minimalement
rigide.

La démonstration utilise un résultat récent de Collin [5].

Finalement nous donnons deux exemples. Le premier montre la
non rigidité des caténoides et consiste en une surface réglée isométrique
et non congruente au caténoide. Le second fournit une famille a un
paramétre d’immersions isométriques minimales non congruentes de
I’anneau R2/(u,v) ~ (u + 2km,v) dans E3. Dans cet exemple ’anneau est
muni de la métrique:

1
5 (1 + e—Zau)Z eZ(a—b)u (duz 4 dU2)
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oll @ et b sont des entiers fixés avec |a|>|b|> 0. La famille Z¢(u,0),
8 € [0, 27|, est donnée par

cos(bu — 0) cos au

Zo(u,v) = {(bchav + ashav) @ _ b sin qu
0
sin(bu — @) [ Sna¥ 1 0
+ (achav + bshav) _cosaul| — —sin(bu —6) o] } e®” .
(@ = b%) 0 1

3. DEMONSTRATIONS

Soit M une surface orientée et f: M — E3 une immersion isometrique.
Nous définissons Uapplication de Gauss de f, notée G: M — &2, en
posant:

G(p)=T,f(e))nT,[f(es)

ou (e;,e,) est une base orthonormée, positivement orientée de 7, M
et T,f est la dérivée de f en p. Dans cette définition &2 désigne la
sphére unité centrée a ’origine dans I’espace euclidien et le symbole «A»
y représente le produit vectoriel. L’application G est ainsi associée a f et a
I’orientation de M. Un changement d’orientation de M a pour effet de
changer G en — G. Lorsque M n’est pas orientable nous définissons
I’application de Gauss comme étant [’application de M dans le plan
projectif 27? qui associe a chaque p € M le sous-espace orthogonal
aT,f(T,M) dans E3.

L’application de Gauss et la courbure de Gauss de M sont intimement
lices. Pour le voir, prenons M orientée et convenons de noter w,, sa forme
volume. C’est par définition la 2-forme différentielle prenant la valeur 1 sur
tout repere orthonormeé et positivement orienté, tangent a M. Par exemple la
forme volume de la sphére &2, munie de ’orientation appropriée, est
donnée par o -2 (p;vy,0,) = det(p, v, ;). La forme différentielle induite
de o -,» par G sur M est une 2-forme différentielle, notée G'o 2, qui est
nécessairement du type Kwj, ou K est une fonction sur M. Cette fonction est
précisément la courbure de Gauss de M. On démontre que K(p) est aussi le
déterminant de I’application 7,G o (T, f) !, considérée comme endo-
morphisme de T, f(T,M) (remarquer que TG, ¥ 2 = T,f(T,M)). En
particulier si la courbure de Gauss est non nulle en p € M, I’application de
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Gauss est inversible au voisinage de p. La théorie de Weierstrass montre que
I’application de Gauss G est conforme, au voisinage d’un point de courbure
de Gauss non nulle, lorsque I’immersion isométrique f est minimale.

Rappelons qu’une application différentiable /#: M — N entre variétés
riemanniennes (M, gs) et (IV, gn) est conforme si A #gN = A+ gy Ou A est une
fonction positive. Il est équivalent de dire que la dérivée de A conserve la
mesure des angles.

PROPOSITION 1. Soit M une surface orientée et f, f* deux immer-
sions isométriques dans E3. Si f et f* sont minimales, il existe une
rotation R de E?, telle quee Ro f et f* ont méme application
de Gauss.

Ainsi, lorsque f et f * sont minimales, elles ont méme application de Gauss
a congruence pres. La propriété, pour deux immersions isométriques f
et f*, d’avoir méme application de Gauss n’implique généralement pas leur
congruence, notamment lorsqu’elles sont minimales. Par contre nous avons la
proposition suivante, essentiellement due a Darboux [7].

PROPOSITION 2. Soit M une surface orientée et f, f* deux immer-
sions isométriques dans E?* dont les applications de Gauss coincident.
Si en chaque point p € M la courbure moyenne de f oude f* estnon
nulle, les deux immersions f et f* sont congruentes.

Une démonstration de la proposition 2 est donnée dans 1’annexe I.
Venons-en a la preuve de la proposition 1.

Preuve. Nous montrons d’abord que les applications de Gauss G et G*
associées a deux immersions isométriques minimales f et f* sont congruentes.
Si la courbure de Gauss de M s’annule partout les applications G et G* sont
constantes et ’affirmation est alors banale. Sinon la théorie de Weierstrass
montre que cette courbure ne s’annule que sur un ensemble fermé discret
de M. Alors la composée G* o G~! définit une application conforme d’un
ouvert de 2 sur un ouvert de &2, L’égalité

(G¥)tw 2 = Koy = Gto 2

montre que I’application G* © G~ ! conserve aussi la forme volume de & 2.
Or une application conforme de la sphére qui préserve le volume est
nécessairement une isométrie et une telle isométrie est une rotation de E3,
puisque I’orientation est conservée. Ainsi G* = R © G ou R est une rotation.
L’égalité est vraie dans tout M parce qu’elle est vraie dans un ouvert dense.
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Revenons a I’application f. Il est immédiat que R © f est, comme f, une
immersion isométrique minimale de M et que son application de Gauss
égale R © G. Nous en déduisons que R o f et f* ont méme application
de Gauss. [

Notre étude comparative d’immersions isométriques minimales d’une
surface M dans E3 s’appuie sur quelques notions de la théorie des singularités
d’applications différentiables entre surfaces, que nous allons maintenant
préciser. Un point singulier pour une application différentiable #: M — N,
entre surfaces, est un point p € M ou la dérivée 7,/ n’est pas de rang
maximum. Un point singulier p est de type pli, respectivement de fype cusp,
si dans des coordonnées locales convenables de M en p et de N en A(p),
I’application 4 est donnée par:

(x,y) = (x2,)

respectivement

(x, )= (x> = xy,y) .

Une application A: M — N est 2-générique si elle n’admet que des points
singuliers de type pli ou de type cusp. Dans ce cas ’ensemble singulier ¥ (h)
est une sous-variété fermée de dimension un dans M et les points de type cusp
en forment un sous-ensemble fermé discret. Notons que #(Z (%)) n’est en
général pas une sous-variété de N.

Pour un vecteur unitaire z € E3 nous notons £, le sous-espace des
vecteurs orthogonaux a z et w, la projection orthogonale de E3 sur E,.
L’espace E, est de dimension deux et si f: M — E3 est une immersion
isométrique, nous pouvons affirmer que ’application n, © f de M dans E,
est générique au voisinage de tout point de M ou la courbure de Gauss est non
nulle, pour presque tout z. Observons qu’un point p € M est critique
pour m, © f si et seulement si z € T, f(T,M) c’est-a-dire si et seulement
si G(p) € E, ou G désigne ’application de Gauss de f. Ainsi pour toute
immersion isométrique f: M — E3 I’ensemble singulier de n, © f est donné
par X(n,° f) = G~ 1(E,).

Nous noterons X.(f) l’ensemble singulier de n.o f. En particulier
si f et f* sont deux immersions isométriques de M dans E3 avec méme
application de Gauss, nous avons 1’égalité

2(f)=X,(f* pourtout ze F?2.

Lorsqu’aucune confusion n’est possible nous écrivons X, a la place de 2. ().
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Soit U I’ensemble {p € M| K(p) # 0}. C’est un sous-ensemble ouvert de M
et si f est une immersion isométrique minimale, U est soit vide, soit le
complémentaire d’un ensemble fermé discret. Dans tous les cas U n X, est
une sous-variété de dimension un de U quel que soit z € & 2. Nous allons
d’abord montrer que la fonction

UnZX,aspr0(p)= Lp(f(zz)a f*(zz))

est localement constante quel que soit z € & 2. Remarquons que cet angle est
par définition ’angle entre les vecteurs T, f({) et T, f*({) de E?3, ou { est
un vecteur unitaire tangent a X, en p. Nous en déduirons, sous certaines
hypotheses, que I’angle entre T, f(§) et T,f*(&) est indépendant de p
etde & e T, M.

Adoptons la terminologie suivante. Soit M une surface et f: M — E3
une application différentiable. Nous appelons différentielle extérieure de f
la forme différentielle df, de degré un dans M et a valeurs dans E3,
définie par

df(p;8)=T,f() pour peM et EeT, M.

PROPOSITION 3. Soit M une surface, orientable ou non, et f, f*
des immersions isométriques de M dans E3, quiont méme application de
Gauss. Si la courbure de Gauss de M est presque partout non nulle
dans M, [’angle entre les vecteurs df(p;&) et df*(p;&) dans E?
est indépendant de & e T,M, & +0, etde pe M.

La preuve s’appuie sur deux lemmes.

LEMME 1. Soit U une surface orientée de courbure de Gauss partout
non nulle et f, f* des immersions isométriques de U dans E3 ayant
méme application de Gauss. Alors [’angle entre df(p;&) et df*(p;¢&)
est indépendant de ¢ € T,U et indépendant de p e U.

Preuve. Remarquons d’emblée que I’angle entre les vecteurs df(p; &)
et df*(p;&) est indépendant de & € T,U. En effet, pour tout pe U
les dérivées, T,f et T,f*, de f et f* en p envoient 7,U sur le méme
sous-espace orient¢ de E3 et comme 7,f et 7,f* sont des isométries
qui préservent l’orientation, elles different par une rotation. Cet angle
2 ,(df(p;&),df*(p;&)) qui est indépendant de § € T, U est appelé angle
entre entre df et df* en p et nous le notons z ,(df,df*). Il s’agit donc
de montrer que cet angle est indépendant de p.
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Soit z € &2 tel que m, o f est générique et X, son ensemble singulier.
Nous montrons d’abord que ’angle <« ,(df,df*) est localement constant
comme fonction de p € X,. Soit y:[a, b] = X, une paramétrisation locale
isométrique et considérons le cylindre paramétré

>y:[a,b] x R— E? défini par (¢, u)~ f(y(t) + uz.

L’application y est une immersion sauf le long des droites {fo} X R
C [a, b] x R pour lesquelles y(#y) est un point cuspidal de X,. Nous
pouvons donc trouver un partage de [a, D]

a<t1<t2"'<tn+1<b

dont les points de partage correspondent par y aux points cuspidaux
de ¥, contenus dans y([a, b]).

Le chemin 7, © y:[t;,ti+1] = E, est une immersion sauf aux extre-
mités ou la dérivée est nulle et ceci pour tout 1 < i < n. La forme locale
pour m,© f, au voisinage d’un point cuspidal, montre que I’image
v ([#;,¢;+1] X R) est un cylindre régulier C; immergé dans E3 et qui se
projette orthogonalement sur la courbe c¢;= 7,0 vy([:,tic1]) CE,.
Notons également c;: [s;, s;41] = E, la paramétrisation de c; par 1’abscisse
curviligne. Alors ’application

O;:[si,8i+1] X R—= E3  définie par (s, u) = c;(s) + uz

est une immersion isométrique sur C;. Désignons encore par C la réunion
des C;. Son développement dans un plan fournit une bande F;, dont le bord
est formé de deux droites paralléles, que nous pouvons supposer paralleles
a z. La courbe fovy|[t;,t;.1] est une courbe lisse, tangente, en ses
extrémités, aux composantes du bord de F;. En recollant la bande F; a la
bande F;, ; le long de la composante du bord correspondant a w({¢;,:} X R)
de maniere que F; et F;, se trouvent dans le méme demi-plan défini par la
droite de recollement, on pourra prolonger le développement de
v ([a, ;] X R) en une application de C = y([a, b] X R) dans le plan, qui est
une isométrie dans chacune des bandes C;. Par cette isométrie la partie
v ([a, b] x {0}) est envoyée sur une courbe lisse C2. Une construction
analogue avec f* a la place de f fournit un cylindre C* = y*([a, b] X R)
qui peut étre appliqué dans le plan, comme avant, par une isométrie sur
chaque bande C¥ et tel que y*([a, b] X {0}) est envoyé sur une courbe
lisse C2.

Notons A et A* ces courbes planes lisses C2, paramétrées par 1’abscisse
curviligne. Pour chaque i, les courbures de A et A* dans ]¢;, ¢, [ coincident
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parce que la courbure géodésique de vy |]¢;,¢,.1[ dans U égale celle
de f oy |1t;, ;1] dans le cylindre C; et celle de f* o v|1t;, ;4] dans le
cylindre CF.

Nous savons en effet que si deux surfaces dans E? sont tangentes le long
d’une courbe lisse, la courbure géodésique de cette derniere est la méme dans
chacune des deux surfaces ([2], p. 249). Les deux surfaces sont orientées et les
orientations coincident le long de la courbe de contact.

Or ces cylindres sont isométriques aux bandes F; et F*, par des isométries
qui envoient f oy |1, ¢4 sur A et f* ovy|1t;, tisi[ sur A* respec-
tivement. Comme A et A* sont des chemins C? de [a, b] dans E?, paramétrés
par 1’abscisse curviligne, nous en déduisons que A et A* ont partout méme
courbure et différent par une isométrie de E?2.

En particulier I’angle entre les vecteurs vitesses A" (¢) et A*’(¢) est constant.
Mais ces vecteurs vitesses égalent respectivement df(y(2);y’(¢)) et
df*(y(¢);y'(¢)). De la on déduit alors que ’angle ~ ) (df, df*) est une
fonction constante de 7. Pour voir que 'angle 2 ,(df, df*) est une fonction
constante de p dans U, il suffit, en vertu de la connexité de U, de remarquer
qu’il est localement constant. Or cela est bien vrai puisque G est un
difféomorphisme local et par suite deux points suffisamment voisins dans U
peuvent étre approximés par des points situés sur des lignes de pli ¥, pour
des z convenables (i.e. m, © f générique). Ceci termine la démonstration
du lemme 1. [

COROLLAIRE 1. Soit M une surface orientée et f, f* desimmersions
isométriques de M dans E3, avec méme application de Gauss. Si
la courbure de Gauss de M est presque partout non nulle dans M,
I’angle 2« ,(df,df*) estindépendant de p.

Ce corollaire résulte immédiatement du lemme précédent par continuité de
cet angle. En effet, dire que la courbure de Gauss est presque partout non nulle
c’est dire qu’elle est non nulle dans un ouvert dense de M.

LEMME 2. Soit M une surface non orientable et f,f* des
immersions isométriqgues de M dans E3, avec méme application de
Gauss. Si la courbure de Gauss de M est presque partout non nulle
dans M, [angle - ,(df,df*) est indépendant de p.

Preuve. Le revétement orientable a deux feuillets de M est une surface
orientable M avec une projection de revétement mw de M sur M qui est
localement une isométrie. Orientons JOI Alors fom et f*om sont des
immersions isométriques de ]\AI dans E3, avec méme application de Gauss.
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Le corollaire précédent montre que I’angle 2 ,(d(f © m),d(f* o m)) est
indépendant de p. Mais c’est aussi ’angle £ () (df, df*). De la surjectivité
de m nous en déduisons que I’angle <« ,(df,df*) est indépendant de
geM. U

Preuve de la proposition 3. Elle résulte immédiatement des lemmes 1 et 2
ainsi que du corollaire 1. [

Voyons comment reformuler le lemme fondamental dans le langage des
formes différentielles. Soit M une surface orientée. Nous pouvons associer a
tout & € T, M le vecteur & € T, M, orthogonal a £ et de méme norme et tel
que, pour & # 0, la base (&, % &) fournit ’orientation donnée de 7, M. La
correspondance & — % & est alors une rotation de T,M et & = —&.

En fait on peut montrer que la structure conforme, sous-jacente a la
métrique riemannienne, et ’orientation définissent une structure complexe
sur M. Pour cette structure I’opération ¢ — % & n’est autre que la multipli-
cation par i. A I’aide de cette opération nous définissons la forme différentielle
suivante

*df(p;8) =df(p; xE) pour peM etleT,M.

C’est une 1-forme dans M a valeurs dans E*. Dans le cas ou f est une
immersion isométrique, nous pouvons observer que pour chaque p € M et
chaque vecteur unitaire & € 7, M, la base (df(p; &), xdf(p; &), G(p)) est

orthonormée et définit ’orientation canonique de E3. Il en résulte que
*df(p;€) = G(p)Adf(p;&) pourtout pe M et tout £ e T,M .
Plus briévement nous pouvons écrire
*df = Gadf .
Un calcul direct, par exemple dans des coordonnées conformes, montre que
dxdf =2Hw,,

ou my est la forme volume de M et H = H - G est le vecteur courbure
moyenne, produit de la courbure moyenne H et de I’application de Gauss.

En particulier la forme % df est fermée, c’est-a-dire de différentielle nulle, si
et seulement si f est minimale.

THEOREME 1. Soit M une surface orientée, avec courbure de Gauss
non identiquement nulle, et [ une immersion isométrique minimale
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de M dans E3. Alors la forme différentielle xdf est exacte si et
seulement si f n’est pas minimalement rigide.

Preuve. Supposons que *df ne soit pas exacte et soit f* une autre
immersion isométrique minimale de M dans E3. A une congruence prés nous
pouvons supposer que f et f* ont méme application de Gauss. Alors nos
hypotheses garantissent que l’angle o entre df(p;&) et df*(p; &) est
constant, indépendant de peM et & e T,M. Comme G = G* nous
savons que le vecteur df*(p; &) est dans le sous-espace T, f(T, M) dont
(df(p; &), xdf(p;£)) est une base orthonormée, si & est unitaire. Ainsi

df*(p; &) =cosadf(p;€) +sina xdf(p;E) pour tout pe M
et tout E e T,M .

Plus briévement nous écrivons

df* =cosadf + sino xdf .
Alors, o étant constant, nous pouvons écrire
d(f* —cosaf)=sina xdf .

En particulier si sina # 0 la forme *df est nécessairement exacte.
Donc, comme *df n’est pas exacte nous avons a =0 ou o = n. En
remplacant éventuellement f par — f, ce qui ne change pas la classe de
congruence, nous pouvons supposer o = 0. Dans ce cas les deuxiémes formes
fondamentales Il = — <dG,df> et II* = — <dG*,df*> coincident
en chaque point de M car df =df* et dG = dG*. Par ailleurs les
premieres formes fondamentales coincident puisque f et f* sont des
isométries. Ainsi dans ce cas f et f* sont congruentes, de sorte que f est
minimalement rigide.

Réciproquement si *df est exacte il existe une application ¢: M — E3
telle que d¢ = *xdf. Pour chaque o € R nous pouvons considérer
I’application

M > pr cosof(p) +sinad(p) = g.(p) .

Cette application est nécessairement une immersion isométrique minimale. En
effet, c’est une immersion car dg,(p;&) = df(p;cosaf + sino(k&))
et ce dernier vecteur est unitaire pour tout vecteur unitaire § € 7, M. Cette
méme égalité montre aussi que ’immersion g, est une isométrie. Vérifions
gu’elle est bien minimale. Or nous avons:

*dg, =cosodd — sinadf .
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I1 en résulte que *dg, est exacte et donc aussi fermée, ce qui est équivalent
a dire que l’immersion isométrique g, est minimale. Nous avons ainsi
toute une famille & un paramétre d’immersions isométriques minimales
contenant f. De plus toutes ces immersions ont méme application de Gauss,
par construction. Comme 1’image de M par cette application de Gauss est
d’intérieur non vide dans &2, les seules isométries de E3, qui par
composition avec f fournissent des isométries ayant méme application de
Gauss, sont les translations. Cela signifie que si les applications g, étaient
congruentes a f elles devraient I’&étre par des translations. Or ceci est
certainement absurde puisque df # dg,. Ainsi f n’est pas minimalement
rigide. [

Remarquons que la non exactitude de % d f est équivalente a I’existence
d’un chemin fermé vy, lisse par morceaux, tel que

*xdf #0.

Y

Par ailleurs il est remarquable que parmi les immersions isométriques
minimales, ce type de déformations soit le seul possible, a congruence pres.
Plus précisément nous avons le corollaire suivant.

COROLLAIRE 2. Soit M une surface orientée et f:M — E3 une
immersion isométrique minimale. Supposons *df = d¢. Alors toute
immersion isométrique minimale f* de M dans E3 s’écrit, a
congruence pres, sous la forme

S*¥=cosaf + sinod
avec a € [0,2m]

Preuve. Nous pouvons supposer M de courbure de Gauss non iden-
tiquement nulle. Alors le théoréme 1 montre que

df* =cosoadf + sina do

avec a € [0, 2n[ constant. Il en résulte que df* = d(cos af + sin o). Ainsi,
par connexit¢ de M, les immersions f* et cosof + sin a¢ difféerent d’un
vecteur constant dans E3. D’ou 1’égalité cherchée, a congruence prés. [

. . . A
Soit M une surface non orientable et soit M son reveétement orientable 3
deux feuillets. Nous le munissons d’une orientation. Soit n:]\AdfﬁM la
projection de revétement. Tout chemin Y:[a, b] > M admet un relévement
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¥:[a, b] = M c’est-a-dire un chemin tel que T © ¥ = y. Nous avons alors le
corollaire suivant qui se déduit de la proposition 3.

COROLLAIRE 3. Soit M une surface non orientable avec courbure de
Gauss non nulle dans un ouvert dense et f, f* des immersions isométriques
de M dans E3, avec méme application de Gauss. S’il existe un chemin

Jermé vy dans M tel que

S *xd(fom)#0

¥

alors [ et f* sont congruentes.

Preuve. Les applications A= fom et h* = f* o w sont des immer-
sions isométriques de M dans E 3, avec méme application de Gauss. Nos
hypothéses impliquent que la courbure de Gauss de M est non nulle dans un
ouvert dense. Nous en déduisons que 1’angle entre dh(p) et dh*(p) est
indépendant de p. Notons le a. Soit y: [a@, b] > M un chemin fermé tel que

A

Y

j *xdh #0 ou ¥ est un relévement de vy .

A ’ ) 7
Remarquons que 7y n’est pas nécessairement fermé. Comme dans la
démonstration du lemme fondamental nous avons:

sA dh* = cosa jA dh + sin a SA *xdh ,
) ; : ;
jA dh* = h*(¥(b)) — h*(Y(@)) = f*(v()) — f*(v(a)) = 0.
De mémye

5 dh =0 et ainsi sinas *xdh =0.
¥ ¥

Donc a = 0 ou o = 7 et nous pouvons en déduire que les immersions 4
et A* sont congruentes. Par surjectivité de m il en résulte que f et f* différent

par une isométrie de E3. [

THEOREME 2. Soit M une surface non orientable et f, f* des
immersions isométriques minimales de M dans E3. Alors [ et f*
SOont congruentes.
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Preuve. Comme M est non orientable, la courbure de Gauss de M
n’est pas identiquement nulle. Par minimalité de 'immersion isométrique f il
s’en suit que la courbure de Gauss est non nulle dans un ouvert dense. A
congruence prés nous pouvons supposer que f et f* ont méme application
de Gauss.

Si f et f* n’étaient pas congruentes, nous aurions la relation

§ *xd(fomn)=0
.;,‘
pour tout chemin fermé y dans M et tout relevement ¥ de vy, dans le
revétement orienté a deux feuillets M de M. Comme auparavant nous
avons noté n:AAJ — M la projection de revétement. Posons 4 = f o et
h* = f* o m. Alors la condition

s *xdh =10
v
implique que *dh = dy ou \u:]\Ad — E3 est une application différentiable
telle que y(x) = y(x’) pour tout x,x" € M avec n(x) = n(x’). Nous en
déduisons que v = ¢ © T ou ¢: M — E? est différentiable.

Considérons les éléments de E3 comme des matrices diagonales d’ordre
trois. Nous avons alors la 2-forme différentielle, a valeurs réelles,

Tr(dha xdh) (p; &, 1)
= Tr(dh(p; &) (xdh(p;n)) — dh(p;n) (kdh(p;t))) .

C’estA une 2-forme dans M qui égale — 2wy, ou m;; est la forme volume
de M. En particulier elle est partout non nulle. Mais elle est induite
par © d’une 2-forme de M. En fait

Tr(dh A xdh) = n* Tr(df Add) .

Ainsi, par surjectivité de m, la 2-forme différentielle Tr(df A d¢) est partout
non nulle dans M. Or P’existence d’une telle forme est équivalente & 1’orien-
tabilité de M. Ceci est contraire a I’hypothése.  []

Revenons au cas d’une surface orientée M et d’une immersion isométrique
minimale f: M — E3. Le théoréme 1 montre qu’il est intéressant d’avoir des

critéres géométriques qui garantissent la non-exactitude de «d f. C’est ce que
nous allons examiner briévement.
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CRITERE A. Pour chaque z € &2 nous considérons la fonction hauteur
h,: M — R définie par M p— h,(p) = <f(p),z>, ou <, > désigne
le produit scalaire dans E3. Si la courbure de Gauss de M n’est pas iden-
tiquement nulle, ce que nous supposons pour la suite, I’image de %, est un
intervalle d’intérieur non vide. En particulier nous pouvons choisir une
valeur réguliere ¢ € R avec A '(¢) non vide. L’ensemble N = h, Y(c) est
alors une sous-variété de dimension 1 de M. Soit pe N et £ € T, N un
vecteur unitaire. Alors

dh.(p; &) =0= <df(p;&),z>

et comme c est une valeur réguliere, p n’est pas critique en sorte que
dh,(p; *&) # 0.

Ainsi
< *xdf(p;€),z> #0VpeN e EecT,N,E#0.

En particulier si N posséde une composante connexe compacte,
cette composante pourra étre paramétrisée par un chemin fermé lisse
v:[la,b] > N C M et en vertu de ce qui précede < k*df(y(2);v'(?)),z>
est non nul pour tout ¢ € [a, b]. 1l en résulte que

| warso.

Nous en déduisons que *df n’est pas exacte et par suite, que f est mini-
malement rigide.

COROLLAIRE 4. Une surface minimale compléte dans E3, qui est
de type topologique fini et possede au moins deux bouts, est minimalement
rigide.

Preuve. Par un résultat de Collin [5], de telles surfaces sont de courbure
totale finie. Or on sait que pour une surface minimale compléte de courbure
totale finie, I’application de Gauss converge lorsqu’on s’approche d’un
bout [10]. Ces valeurs limites pour les différents bouts sont toutes colinéaires
parce que la surface est plongée. Soit z € &2 'une de ces valeurs limites.
Le comportement asymptotique des bouts montre que la fonction #,
converge ou tend vers I’infini lorsqu’on s’approche d’un bout (voir [11]). En
choisissant une valeur réguliére pour #,, distincte d’une de ces valeurs
limites, on obtient une image réciproque compacte et non vide. Le critére A
ci-dessus établit alors la rigidité minimale de la surface. L[]
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CRITERE B. Avec les notations de la proposition 1, considérons cette fois
la composée m, o f. C’est une application 2-générique de M dans le
plan E, pour presque tout z € &2 et en fait pour tout z si la courbure de
Gauss de M est partout non nulle. Lorsque l’ensemble X, des points
singuliers de m, o f possede une composante connexe compacte et que
v:[a,b] = M est une paramétrisation d’une telle composante, nous
considérons le partage

a<t| <t, < - <t,<b

tel que les points y(¢;) sont les points de type cusp de la composante
de X, considérée. Notons g; le signe de la fonction

p(t) = <zAG(y (1), df(y(2);y'(¢))> pour t€lti, tic[.

Alors I’intégrale s < xdf,z> égale la somme alternée des longueurs

Y
I(n,o fovy([t;,t;+:]). Nous appelons cette somme alternée la longueur

algébrique de la composante . © f © y([a, b]) du contour apparent. En
particulier si cette longueur algébrique est non nulle, I’intégrale est non nulle
et la forme *df n’est pas exacte. Il est ainsi possible, dans certains cas de
voir la rigidité d’une immersion isométrique minimale f: M — E3 & partir
d’une projection générique de f(M).

Explication. Nous pouvons supposer le chemin vy lisse et en remplacant
éventuellement z par — z que p(f) = 0 pour tout ¢ € [a, t,] et ¢ € [¢,, D].
Chaque fois que nous passons un point de type cusp la fonction p s’annule
et change de signe. C’est-a-dire, €,,;, = —¢; pour i=1,...,n et en
convenant que €,,; = 1. Cela résulte de la forme locale standard de la
surface f(M) au voisinage d’un point cuspidal. Par ailleurs nous savons
que la forme différentielle *d f est liée a df et a ’application de Gauss G
de f par la relation: *df(p;&) = G(p)Adf(p;&). Il en résulte que

< *df(p;£),z> = det(G(p),df(p;£),2) = <zAG(p),df(p;€)> .
Comme I’application 7, est linéaire nous avons
< *xdf(p;€),z2> = <zAG(p),d(n.° f) (p;&)> .

Lorsque p = y(¢) € X, n’est pas un point cuspidal, le vecteur z A G (y(?))
est unitaire et tangent au contour apparent m, o f o y([a, b]) au point
n (f(v(D)) et si &=y'(¢) Pexpression < kdf(p;&),z> égale p(z).
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Mais le chemin 7, © f o y est précisément une paramétrisation d’une compo-
sante du contour apparent et par le choix de z nous pouvons affirmer que

< kdf(y(t);v' (1), 2> = p(t) = (- Di|[(n. 0 fFoy) (1)
Vielttivi].

Cette égalité reste vraie en un point cuspidal ou les deux membres valent zéro.
Par définition de la longueur algébrique de m,© f © vy nous avons alors

s *df =Y (=Dil(n,o foyl|lt,ti]). U
¥ i=1

Observons que »n est toujours pair et que par convention nous avons noté
I(n,o foy|[ty,tas1]) la somme de longueurs I(m,o fov]|l[a,t])

+ [(n, 0 foyl|lts,b]).

De ces considérations il résulte immédiatement que si pour un z € &2
avec m, 0 f générique, I’ensemble singulier ¥, posséde une composante
connexe sans points cuspidaux, I'tmmersion f est minimalement rigide.

4. EXEMPLES

Exemple 1. Non rigidité des caténoides.

Rappelons que les caténoides sont les seules surfaces de révolution
minimales et completes, voir Hildebrandt [8]. Ils sont obtenus par rotation
d’une chainette autour d’un axe. Si nous prenons pour axe de rotation
I’axe des z, les caténoides sont tous engendrés par la rotation des chainettes
x =ach (Z—zo) contenues dans le plan 0,,. Chaque caténoide peut, apres
translation, étre paramétré par

X, (s,u)y =(achucoss,achusins, au) .

Le changement de parametre (s,v) = (s, shu) définit une nouvelle para-
métrisation

Y,(s,v) = (ach(argshv)coss, ach(argshv)sins, a argsh v)

et dans cette paramétrisation les coefficients de la premiére forme fonda-
mentale sont g;; = a*(1 +0?%), 812 =0 et gz = az.

Construisons maintenant une surface réglée de E3 isométrique et non
congruente au caténoide.
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Il existe [13] des courbes fermées de E*® de longueur arbitraire, de
courbure non nulle dont la torsion est constante et égale & un. Montrons que
’image par une homothétie de E? de rapport a de la «surface» des
binormales d’une telle courbe y de longueur 27t définit une immersion de
I’anneau R2/(s,v) ~ (s + 2w, v) dans E3 qui est isométrique au caténoide
(comme surface paramétrisée). L’immersion dont I’image est la «surface»
des binormales est donnée par

Z.(s,0) = a(y(s) + vb(s)),

s étant ’abscisse curviligne de vy et b(s) désignant la binormale & y en y(s). Les
coefficients de la premiére forme fondamentale sont g;; = a?(1 + v?),
g1, =0 et gy = a’.

Ainsi, les deux immersions Y, et Z,, que nous venons de construire,
induisent la méme métrique riemannienne sur ’anneau R2/(s,v) ~ (s + 27, ),
a partir de la métrique euclidienne de E3. Cela signifie que Y, et Z,
sont des immersions isométriques de l’anneau muni de cette métrique
induite. Un calcul direct montre que la courbure moyenne de Z, égale
H(s,0) = |¥(s)|/a)/1 +v2. Comme vy est de courbure non nulle,
I’immersion Z, n’est pas minimale et ne saurait donc étre congruente a Y,.

Exemple 2. Surface minimale immergée, complete, non simplement
connexe et non minimalement rigide.

Nous considérons, dans ce qui suit, des immersions dans £3, d’un
domaine simplement connexe D C C. Il est alors sous-entendu que D est muni
de la métrique riemannienne induite par cette immersion a partir de la métrique
euclidienne de E3, de sorte que cette immersion est toujours une isométrie.
Soient f et g des fonctions, avec g méromorphe non identiquement nulle
et f holomorphe non nulle excepté aux pdles de g, ou 'ordre du zéro
de f égale I’ordre du pdle de g2. Alors pour toute paire de telles fonctions,
la représentation de Weierstrass fournit une immersion isométrique minimale
de D dans E3, donnée par la formule

w

X(w) = Re 5 d(z)dz
Wo
ou ®: D — C3 est 'application ® = (%f(l — gz),éf(l + g2), fg) et ’'inté-
grale est effectuée sur un chemin quelconque joignant w, a w.




174 O. BURLET ET F. HAAB

L’immersion adjointe X* de X est la partie imaginaire de I’application «
de D dans C?3, définie par

a(w) = s ®(z)dz .

wo

L’immersion X * induit dans D la méme métrique riemannienne que X, de plus
elle est minimale. Plus généralement pour tout 6 € R, ’application

Zo(w) = Re(e ®a(w)) = cos0 X (w) + sin0X*(w)

fournit une immersion qui induit dans D la méme métrique riemannienne
que X et qui est minimale. Explicitement cette métrique dans D est donnée par

ds> = L 7P+ 1] dz 2.
2

La fonction méromorphe g: D — C égale la projection stéréographique de
I’application de Gauss associée a Zgy, elle est donc indépendante de 0.
La courbure de Gauss est donnée par

K:_(lfuﬂgiglzv)z'

Construisons maintenant un exemple de surface minimale immergée,
compléte, non simplement connexe et non minimalement rigide. Prenons
D=0C,g(z) = —ieivret f(z) = —ie!t-92 aveca,beZet|a|>|b|>0.
Les immersions minimales associées sont données par

cos(bu — 9) [ €O U
Zo(u,0) = { (bchav + ashav) sin au
(a* = b?)
0
sin(bu — 9) | Srau 1 . 0
+ (achav + bshav) —cosaul — —sin(bu—-96) |0 ebv |
(a? — b?) 0 b X

Les immersions minimales Zg(u, v): R?2 = R3, 0 € [0, 21), définissent des
immersions isométriques minimales 29 de ’anneau R?/(u,v) ~ (u + 2k=, v)
dans E® non congruentes entre elles. Ces immersions isomeétriques ne
possédent pas de points singuliers car C est muni de la métrique induite

1
ds? = 5(1 4 e—Zau)zeZ(a—b)u > 0.




UN THEOREME DE RIGIDITE 175

Observons que C muni de cette métrique est complet car
1
ds?(u + iv) = = (e2@-Dv 4 2e-bv 4 e(-a=0)v) (du? + dv?)
2

tend vers + o si v + o vu que |a|>|b|>0. Finalement la cour-
bure totale de 29 est égale a 4amnm car D’application §, composée de
P’application de Gauss et de la projection stéréographique est égale a
g(u,v) = e~ %’(sinau, — cos au).

Nous avons donc construit une immersion isométrique minimale X sans
points singuliers d’un anneau complet de courbure totale —4am, a = 2,
qui n’est pas minimalement rigide. On peut observer que X posséde un bout
planaire et un bout de type Enneper. Les figures ci-apreés représentent
différentes étapes de la déformation isométrique de I’immersion minimale X
en 'immersion isométrique minimale adjointe X*. La figure 1 représente
la trace du domaine {(#,0)|0<u<2n0<v<1}. Les figures 2 a 5
représentent la trace du domaine précédent par les immersions isométriques
Zyavec® =n/8,n/4,3n/8, n/2. Toutes ces surfaces sont vues depuis une
direction parallele a (-1, —2, —1).

FIGURE 1
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ANNEXE |
Nous allons démontrer ici la proposition suivante:

PROPOSITION 2. Soit M une surface orientée et f, f* deux immer-
sions isométriques dans E?* dont les applications de Gauss coincident. Si en
chaque point p € M la courbure moyenne de f ou de f* est non nulle,
les deux immersions [ et f* sont congruentes.

Preuve. Rappelons qu’en chaque point p € M nous avons les formes fon-
damentales suivantes, définies sur 7, M:

Ip(aa T]) =< Tpf(za)a Tpf(n)>
I,(&n) = - <T,G(), T, f(n)>
]]]p (és n) =< T,DG(&)a TIJG(T]) >

Rappelons brievement que courbure moyenne et courbure de Gauss en p sont
reliées a G et a f par les formules

1
H(p) = ETY(TpG (T, f)™Y)

K(p) = det(T,G o (T, f)"1).

L’application 7,G © (7, f)~! est un endomorphisme linéaire de 1’espace
vectoriel G(p)*+ =T, f(T,M), H(p) est la courbure moyenne de f en p
et K(p) sa courbure de Gauss en p. Les formes fondamentales de f en p
vérifient 1’identité

11, (&,n) + 2H(p)11,(&,n) + K(p)I,(&,n) =0
Notons I}, 11}, 111}, H*,G*, K* les objets analogues définis pour f*.
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Comme f et f* sont des immersions isométriques nous avons I, = [ et
K = K*, et comme G = G* nous avons aussi [1I, = III} pour tout p € M.
Les endomorphismes A, = T,G o (T, f) ‘et A¥ = T,G* o (T, f*) ! sont
auto-adjoints et sont donc représentés par des matrices symétriques dans une
base orthonormée de G(p)‘. Nous pouvons écrire A% o R, = A, ou
R,=T,f* o (T,f) ! est une rotation, vu que f et f* sont des isometries
avec méme application de Gauss. Soit 6, son angle de rotation avec
—n < 0, <n. Par symétrie de A et A* nous avons

Tr(A*R) = TrA*cos® =Trd4d e Tr(AR-!')=TrAcos6 =TrA*
D’ou les formules

H*cosO0=H e Hcos6=H*

Nous en déduisons que H* = cos?(0)H* et H = cos?(0) H, et avec nos
hypothéses, H ou H* non nuls en chaque point, nous pouvons conclure que
0, =0 ou 6, = m, pour tout p. Par connexité de M la fonction p— 0, est
constante, égale a 0 ou ©. En remplacant éventuellement f* par — f*, ce qui
ne change pas la classe de congruence de f*, nous pouvons supposer 6, = 0
pour tout p. Ainsi H = H*. Alors les identités entre les formes fondamentales
et le fait que H soit partout non nulle, impliquent 1’égalité des deuxiémes
formes fondamentales /7 = I7*. Tenant compte du fait que G = G *, la théorie
locale des surfaces montre alors que f* = 1t © f ou T est une translation de
E3. En fait Iapplication p = (f*(p) — f(p)) est localement constante donc
constante par connexité de M. En d’autres termes f est congruente & f*. [
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