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148 K. CONRAD

which he explicitly points out is valid in all characteristics. Thus a proof of
Stickelberger’s congruence for all finite fields via the Gross-Koblitz formula
is justified.)

PROOF OF JACOBI SUM CONGRUENCE VIA STICKELBERGER

We now want to show that not only does Theorem 1 follow from
Theorem 2, but Theorem 2 follows from Theorem 1, so the two theorems are
equivalent. Some preliminary results will be required before the (tedious) proof
is presented.

For n € N, write

n=co+tcip+ - +cp? 0<e;<p—-1.

From [3, Chapter IX],

n—{(cog+ - +cg) n! _
p-1 > (-p)erdplnh) =

ord,(n!) = Co! " ... cg! mod p.

Note neither equation requires c; # 0. We define

def def
Sp(n)écoJr e+ Cy, Hp(n)éco!-...-cd!,

and note neither of these definitions requires c; # 0. One sees easily that for
any n € N,n = S,(n) mod p — 1, and for n,,...,n, € N,

(n1+---+n,)!) _ Spn)+ -+ 8p(n) = Sp(ny+ -+ +ny)
= o1

ord, (

nl!-...~n,!

For x € R, let {(x) denote the fractional part of x. For b € Z, let b = b’
b b’ .

mod g — 1 where 0 < b" < g — 1, so that <q—1> =71 Define

5q(D) = Sp(D"), he(b) = Hy(b"),

so s, and h, are just the extensions of S, and H, from {b:0<b<q — 1}
by (g — 1)-periodicity. From [7, p. 10],

b
sq(b) =(p—1) ) <p_"> :

o<i<f-1 Vg —1
Since ordg (G, — 1) = 1, Stickelberger’s congruence can be written for all a
in Z as
G(w, ‘) 1

€, — 1)%@ = 7o) mod P .
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LEMMA 2. For r,meZ*, and b,,...,b, € Z,

<b,> <b1+ +br>
+{—=) > :
m m

If by+ - +b,=0mod m and some b;# 0 mod m then

Proof. Let b; = b;mod m, where 0 < b; < m. Thenb; + -+ + b; 2 0,
so since x = {x) for x > 0,
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If by+-+b,=0 mod m then (b;+ -+ +b))/meN. If some
bj#0 mod m then b/>0, so (bj+---+b])/meZ+, hence
is >1. [

COROLLARY 1. Let 0 < ki, ..., k,<q—-1 with k;+ -+ +k,>q — 1,
so r=2 and at least two k;>0. Then

f >s,(ky+ - +k,) ifki+--+k,#20mod g—1
DRI TR( ST REACE if kit 4k =0mod g -1,
>qg-—1
\ = f(p—1) ifky+ - +k,=qg—1.

Proof. From above,
ik ikr
Sq(kl)+"'+5q(kr)=(p_l) Z (<p 1>+"'+<p >)
o<i</-1\\qg—1 | q—1

Ifky+ - +k #£0 modhq — 1, applying Lemma 2 to p‘k,, ..., p'k, shows
that each addend is > <pl(k1;_”1. o
hypothesis, since

k kr k+ , 5% %
< 1>+...+< >= y +k>1> ki + + k, |
q—1 q—1 q—1 q—1
If ky+ -+ +k, =0 mod g — 1 then by Lemma 2 each addend is > 1,
with strict inequality when i = 0if k; + -+ + k, > g — 1. []

) » with strict inequality when i = 0 by
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We now state a more general version of Lemma 1, with a different notation
that will be better suited for what follows.

LEMMA 3. For ky,....,k, € Z with some k;# 0 mod g — 1,

Gy ¥ .- Gy ¥ _
G(mp_(kl-‘-.“_l-k’)) lf‘k1+"°+kr$—é0 mOd q_l

T, 1, w4 = 1
S G, ) .. G, ") ifki+ -+ +k,=0 mod g—1.

Proof. Use [6, Chapter 8, Theorem 3] and its corollaries, keeping in mind
the differences mentioned between that book and this paper on various
definitions. L]

Proof that Theorem 1 implies Theorem 2. We have 0 < k;,...,k, < g — 1
with some k; > 0, so if the second case of Lemma 3 holds, then r > 2 and
at least two k; are > 0. From the multinomial coefficient manipulations at
the end of the proof of Theorem 2, if k; + -+ + k., > g — 1 then

(ki + =+ + k,)!
kil k!

= 0 mod p . (*)

Thus to prove Theorem 1 implies Theorem 2 we are led to the following four
cases:
Casel: k;j+ - +k,>qg—-1,ki+ - +k,#0modg—-1
Case2: ki+ - +k,>q—-1,ki+ - +k,=0mod g -1
Case 3: ki+ - +k,=qg—-1
Case4: O0<k;+ " +k <qg-1.

We will prove Theorem 2 from Theorem 1 by establishing the congruence
of Theorem 2 modulo 3, since Theorem 1 involves a Gauss sum, which lies
in Z[C,-,,(,] but not usually in Z[C,_,].

In Cases 1 and 2, by (*) we want to prove ordsg (J (@, ', ..., @, ")) > 0.
By both Stickelberger’s congruence and Lemma 3,

[ sg(ky) + -0+ sq(k,) — sq(ky + - + k)
in Case 1

ordsB(J((on‘k‘, ey mp_k’)) =
Sq(kl) Rl Sq(kr) _f(p - 1)
in Case 2,
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and in both cases the expression on the right is positive by Corollary 1.
To prove Cases 3 and 4, note by [11, p. 324] that ({, — 1)?~! = — pu,
where ¥ = 1 mod ({, — 1), hence ¥ = 1 mod P.

In Case 3, Stickelberger’s congruence and Lemma 3 yield

J@, ", 0. g = r mod B
(Cp_ l)sq(k1)+“'+5q(kr) hq(kl) hq(kr)
1

M

® s mod P since 0<k;<qg—1
Hp(kl) Hp(kr)

(— p)ordp(kit) ++ +ord, (k1)

kil k!

mod P .

Since Sq(kj) — Sp(ki),

(Cp _ l)sq(k1)+~-+sq(k,) — (Cp _ 1)k1+ ot k= (p=1) (ord (kD) + -+ +ord, (K, 1))

—1
(p-1) (% — (ord (e y 1) + -+ - +ordp(k,!)))

So
J(@, ", .., 07" q(— puyordsteat- o dee) (= p)orde k)
( )q—_i = kil k! mod ‘[ ,

which implies by the congruence u = 1 mod ‘B and by multiplication by
(g—D!=(k;+ -+ +k,)! that

!
J(@, *1, . o5 ) L LI oo (mp)erdptatie) =
(=p)7~!
!
(ky + + k) (= p)ordpkit-..-kr1) mod P11+ -Dordy((g-11)
kit-.. k!

Since

L+ (p—1Dord,((g - 1!) = (p— Dord, (k! - ... - k,!)
=l+q-1-8,(¢g—-1) -k, — -+ ~k,+ S,ky) + - + S, (k,)
=1l -f(p-1)+s5,(k)) + - + sq(k,) since 0 < k; < g — 1

> 1 by Corollary 1,
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we see
! ky+ -+ kp)!
-k —koy . q =( 1 r
J@p ™ 0y =l ke k) mod %,
(-p)7~!
so the congruence
q! q! _
71T Tyt = Hel@) = 1 modp
(-p)r-!

settles Case 3.
Finally, in Case 4, Stickelberger’s congruence and Lemma 3 imply that

J( 1, . o0k holky + -+ + k,
(O‘)p Wy ) — q( 1 ) mod P ,
(Cp _ 1)sq(k1)+~--+sq(k,)—sq(k1+---+k,) hq(kl) - hq(kr)
SO
J(@7 1, ..., o % ky+ - +k)! 1
(((jﬁl) d (kli"')'i'kr)! = ( ;('- -k ’) ‘ gl (k14 +kp)! mOd SB’
(Cp—_l) orP( kil k! ) B e Tt (- p) p("?ﬁfTT?ﬁ_)

since s,(k;) = S,(k;) and s,(ky+ -+ + k,) = Sp(ki + -+ + k). Thus

J(, 1, e ) = o mod B ]
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