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relation between Gauss sums and Jacobi sums in order to introduce the

factorials of the base p digits into Stickelberger's congruence in (essentially)

one step:

Lemma 1. If %i, ...,Xr are multiplicative characters on F^ with

nontrivial product %i • • %r, then

G(xi)-...-G(Xr)
G(X 1

• • Xr) •

J(X 1 » ...» Xr)

Proo/. See [6, Chapter 8, Theorem 3], noting that our weaker hypotheses

than those of [6] are sufficient since we assume the trivial character vanishes

at 0.

Proof of Stickelberger's Congruence Via Jacobi Sums

For %i, Xr multiplicative characters on Z[^-i]/p» it is easy to
check that

/(XI» ...» IrY /(XI» ...» Xr) mod p

so J(xi, Xr) 55 rational integer mod p. We will show below (Theorem 2)

that when some X/ is nontrivial, as an integer representative one can take a

certain r-fold multinomial coefficient.
In the case r 2 there is the following classical congruence: if 0 ^ kx,

k2< q - 1 and not both ki9 k2 are zero, then

/(œ~\ô)~*2)
+ ^' mod pp p kx\k2\

References for this congruence are given in the Notes in [6, Chapter 14]. We

shall extend this congruence to Jacobi sums of any number of multiplicative
characters of F^ as follows:

Theorem 2. For r ^ 1 and 0 ^ kx,..., kr < q - 1 with some
kj > 0,

J((ù~kl, co~*0 — — mod pp p
k\ \ • - kr\

The simplicity of the statement of this generalization makes it somewhat
surprising that it does not seem to appear in the literature (such as that which
is mentioned in the Notes in [8, Chapter 5]).
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In our proofs of Theorems 1 and 2, we will view multinomial coefficients
as special values of polynomials. For t ^ 1 and ni} nt e N, define

* )-\ni, ntf
X(X~ 1) • • (X- ni -nt+ 1)

In particular, (0>* 0)

When t 1, this reduces (even in notation) to the binomial coefficient
polynomial, so whereas many people would write (for r ^ 2 and ni9 ...,nr e N)

(/?i + • • • + nr)
n11 - • nrl

as we write it as
'

n+n^\ having one less integer in the

bottom is convenient, as for binomial coefficients. The main advantage of this

notation is that in Z[[XÏ9 ...,Xt]\ one has

(1 + (YYl
\
xi'

ni, nt]

for all integers m.

Although the following two multinomial coefficient congruences are rather

general, they will each be used only once, and in special cases.

CI. For t > 1, choose ni,...inte N and de N with each

nt < pd. For be Z,

C+"')-( " j mod p
\ni9 ...,nt) \nl9

C2. For d ^ 0, t ^ 1, and m0, mt ^ 0 write

m0 Cq + C\p + • • • + cdpd, 0 ^ Ci < p - 1 for i < d ;

mj c0y + Cup + • • • + cdjpd, 0 ^ C/y < /? - 1 for i < d and 1 < j ^ t,

where cd, cdj > 0. Then

[ m°W C° )•••••( * )modp.
\M\, mtJ \c0i, Cot) \cd1, cdt)

To prove CI, work in ^p[[Xi9 ...,Xt]] and use the equation

(1 +*!+••+ Xt)b+Pd (1 + Xi + • • • + *,)*(! 4- Xf + • • • + xf)
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To prove C2, the condition on the leading "digits" cd,cdi, *..,cdt just
being nonnegative reduces the proof to the case d I. Now look at the
coefficient of X1 • • X1 on both sides of the equation

(i + Xx + • • • + xt)mo (i + Xi + • • • + xtyo(\ + x\ + - • • + xpt)ci

in Fp[Xi, ...,Xt]. In the binomial case (t 1), C2 is originally due

to Lucas [9], and is also in [4]. The general result (^ > 1) is due to
Dickson [2, p. 76].

Proof of Theorem 2. For any %, /(%) 1, so we can assume r > 1. Since

some kj > 0 and a Jacobi sum is a symmetric function of its arguments,
we choose kr> 0. We will let ai, ar_ i each run independently through
representatives for the nonzero classes of ¥g Z[t^_i]/p, say the complex
roots of Xq~x - 1. For s in Z, cöp(a) as mod p if a ^ 0 mod p or
s ^ 0 (we set 0° 1), so

/(cop k',...,top kr)

(- l)r"' I ©>""*'(a i) • • a>p~<:r"1(ar_i)cOp(l - a, - ••• - a
aj

l)r_1 Y ai k''••• ' a~_k[~'(l-at - - <xr-i)q-l~kr mod p

The only time laa 1'isn't zero is when - 1) ; - A,), when the
sum is q- 1 - 1 mod p. From 0 ^ kt - 1 and

- (q -1) < - kt«£ rii -k,^ n,< q-1 - kr <q-1

we see that (q~1) | («, - A:,) if and only if «, A:,. Thus,
if kx + • • • + kr.x > q - 1 - kr, we have J(G>~k> (op~*r) 0 mod p,
while if ki +• • + kr_x^ q -1 - kr,

rtj ^ 0

n\+ ••• + nr_\^.q—1—kj

(I <<-*<)•

7(©p-*',.^ 9 1 M(-i)
\ A^i,..., Arr _

r-l + t.-f.1)r_, mod -p



146 K. CONRAD

If^i + ••• + kr-i > q - 1 - kr, this last expression equals 0, so regardless

of the value of kx + • • • + ^_l5 we have by CI that

k k (k\ ~t~ • • + kr

\ k\, kr _ i

(k i+ + kr)\
k\ • * kr\

mod p

Remarks. 1. Theorem 2 is not true in general when all kj 0,

since the Jacobi sum of the trivial character on Tq taken r times is

(1 - (1 - q)r)/q r mod p.
2. It is reasonable to ask if Theorem 2 can be proven in general if it is just

known for r 2. After all, there are recursion formulas relating a multinomial
coefficient to a product of binomial coefficients and a Jacobi sum of several

characters to a product of Jacobi sums of two characters. However, this latter
relation depends on hypotheses of nontriviality of certain characters which are

not part of the hypotheses of Theorem 2 (for example, J(x\ > Xi > X3)

precisely when X1X2 is nontrivial). Thus it would

likely be cumbersome to use this approach to prove Theorem 2.

Proof of Theorem 1. It is obvious for a 0, and see [11, pp. 96-97] for
the case a 1 (whose proof shows why one should expect the theorem to hold
for positive powers of co" \ not of cop:pf - 1 #F* is more closely related

to pd - 1 than to pd + 1). Now we may assume q > 3. For 0 < a < q - 2,

we have by Lemma 1 that

G{(ù~a) G(co0_1)
G((D~'a+l))

P T a r-\~ ^y(cop cop

and /(cop *, cop l) a + 1 mod p (hence also mod ^ß) by Theorem 2, so by
induction and the equation ord^(Çp - 1) 1,

(7 — l)ß
G(co~°) ^ — mod tya+l

a!

for 0 ^ a ^ p - 1 (or a < p - 1 if q p). If q p we're done, so

assume q > p, i.e. / ^ 2. Going from a p - \ to a p is & problem
because \ p and we don't want to divide by p in our congruence modulo a

power of We circumvent this with Jacobi sums.

For 1 ^ a < q - 1, some digit at is > 0, so co~a, co"0'^' are nontrivial.
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Then by Lemma 1,

G(ct)p ") G(cûp "° • •

G(co„-"°) • • G(a>;a'-ip/-1)

_G(coB-g°)---G(a)p-^-1)

the last equation holding since G(%") G(%) (see [7, p. 5]).

Since ord*p(a;!) 0,

(7 - l)io+ ' •' +«/-i
G«"0) • • G(co7a/-') — —mod ' •' '

•

p a0! * ••• ' af-\\

By Theorem 2 and C2,

/(co-»°, - (ß°+ +fl/"f/2_1) m0d P
p \ a0, ...,af-2pf~2 I

-( °° W V
\a0, 0,...,0/ \0,al9...,0J
1

Therefore

J(c0p a°,..., co~°/-1/,/"1) 1 mod

so we are done. D

Our method of proof shows that writing Stickelberger's congruence as

G(co~a)= n ~—— mod ^3ao+ ''+0/-i + 1

a il

isolates terms in analogy with Lemma 1. This gives a new explanation for the

appearance of base p digits in the denominator in Stickelberger's congruence.
There are more sophisticated explanations, cf. the proof of Stickelberger's

congruence via the Gross-Koblitz formula in [7, Chapter 15]. (Although both
the original proof of the Gross-Koblitz formula in [5] and the proof in [7] are
only done for finite fields of odd characteristic, the formula is also valid for
characteristic 2 since Lemma 1.1 (ii) in [7, p. 333] is valid for all ô > 0,

not just for 8 ^ 1 /(p - 1). Alternatively, in [1] Coleman gives a simple proof
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which he explicitly points out is valid in all characteristics. Thus a proof of
Stickelberger's congruence for all finite fields via the Gross-Koblitz formula
is justified.)

Proof of Jacobi Sum Congruence Via Stickelberger

We now want to show that not only does Theorem 1 follow from
Theorem 2, but Theorem 2 follows from Theorem 1, so the two theorems are

equivalent. Some preliminary results will be required before the (tedious) proof
is presented.

For ne N, write

n c0 + cxp + • • • + cdpd, 0 ^ Ci ^ p - 1

From [3, Chapter IX],

ordj,(«!) "-z~TTL—,(-p)"Lpw) c0! ' ••• • mod

Note neither equation requires cd ^ 0. We define

Sp(n)c0 + • • • + cd,Hp{n)c0! • • cd\

and note neither of these definitions requires cd ^ 0. One sees easily that for
any n e N, n Sp(n) mod p — 1, and for nx, nt e N,

/ (n i + • • • + nt) \ Sp(n i) + • • + Sp(n t) - Sp(n i + • • • + n t)
0IA •

For x e R, let <x> denote the fractional part of x. For b e Z, let b b'
mod q — 1 where 0 ^ b' < q - 1, so that (~~ï) 7- Define

sq(b) Sp{b')9 hg(b) Hp(b')

so sg and hq are just the extensions of Sp and Hp from {b:0 ^ b < q - 1}

by (q - l)-periodicity. From [7, p. 10],

sg(b)(p-l)I (-^7)
0</</-1 \q ~ 1/

Since ordçpKp - 1) 1, Stickelberger's congruence can be written for all a

in Z as

G(©;fl) l
s mod ^(^-1 )M*> hg(a)
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