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JACOBI SUMS AND STICKELBERGER’S CONGRUENCE

by Keith CONRAD!

ABSTRACT. We present an extension of a classical congruence for Jacobi
sums of two characters to a congruence for arbitrary Jacobi sums. This
congruence is used to provide what seems to be a new proof of Stickelberger’s
congruence for Gauss sums, as well as a new explanation for the appearance
of base p digits in Stickelberger’s congruence. It is also shown that in fact the
Jacobi sum congruence and Stickelberger’s congruence are equivalent.

INTRODUCTION

About a century ago, Stickelberger established a congruence for Gauss
sums over a finite field which has had useful implications for the study of
cyclotomic fields. A generalized version of a classical congruence for Jacobi
sums of two characters will be proven which is ultimately shown to be
equivalent to Stickelberger’s congruence. In particular, this allows for a new
proof of Stickelberger’s congruence and a new explanation for the form of the
congruence.

Before discussing finite fields, we will need to fix a way of representing
these fields and the multiplicative characters on them. Let p be a positive
prime, g = p/ for fin Z+. We have the following diagram of number fields
and primes, where ‘B; lies over p;, ¢ = ¢(q¢ — 1)/f, and {,, {,_; € C denote
roots of unity with respective orders p and g — 1:

Qo1 p) PO B

| |
QCq-1) P ..t D

| |
Q D
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Fix any prime p in Q({,_;) lying over p and let P be the unique prime
in Q(C4-1,C,) lying over p. Then Z[{,_;]/p is a field of size g, and from
now on F, denotes this field.

Let ®, denote the Teichmiiller character on F,, i.e. for a in
F, (a € Z[{,-1]), wy(a) is the unique complex root of X7 — X satisfying
®p(a) = a mod p. Taking o = {,_;, we see that o, has order g — 1, hence
generates all multiplicative characters of F,. We will write w,(o) instead
of wy(a).

Although F, depends on p, we don’t indicate this dependence in the
notation. Replacing Q by Q, would give only one prime over p in each
extension field, making our representation of F, and definition of w, more
canonical, but we will not bother with this.

For 0 < a < g — 1, write the base p expansion of a as

a=ao+ - +a;_p/t,

where 0 < ag;<p—1(notallag,=p—1).

Throughout this paper, {, is fixed. The (normalized) Gauss sum of a
multiplicative character y, of F, is defined by
— Z x(x)g;ngq/Fp(x) )

xqu

def

G(y) =

The (normalized) Jacobi sum of the multiplicative characters ¥, ..., %, of F,
is defined by

T ) S (=170 Y () e % ()

X1, X, €Fy

X1+ +x,=1
For basic properties of Gauss and Jacobi sums see [6, Chapters 8 and 10].
(Note: We always take y(0) = 0. In contrast to the definitions above,
Gauss and Jacobi sums in [6] are not normalized by a power of — 1, and the
trivial multiplicative character is set equal to 1 at 0. These differences affect
no results we use from [6] in any essential way. Actually, our normalizations
make some formulas from [6] which we won’t use look cleaner.) Using Jacobi

sums we will prove

THEOREM 1 (Stickelberger). Using the same notation as above,

(o — Do+ o

ao! EETTI /S

G(O)p_a)E mOdSBaO+"'+af—1+1.

The original proof of this congruence is in [10, Section 6]. A modern
reference for a proof is [7, Chapter 1]. In our proof, we use the following
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relation between Gauss sums and Jacobi sums in order to introduce the
factorials of the base p digits into Stickelberger’s congruence in (essentially)
one step:

LEMMA 1. If %i,...,%r are multiplicative characters on F, with
nontrivial product Y- ... * %r, then

G G
J(1seees %r)
Proof. See [6, Chapter 8, Theorem 3], noting that our weaker hypotheses

than those of [6] are sufficient since we assume the trivial character vanishes
at 0. [

G(%1 " e " %r)

PROOF OF STICKELBERGER’S CONGRUENCE VIA JACOBI SUMS

For %4, ..., X, multiplicative characters on ¥, = Z[{,_,]/p, it is easy to
check that

J(Xl? ceey Xr)p = J(x19 ey Xr) mOd p ’

so J(%1, ..., %,) = rational integer mod p. We will show below (Theorem 2)
that when some 7y ; is nontrivial, as an integer representative one can take a
certain r-fold multinomial coefficient.

In the case r = 2 there is the following classical congruence: if 0 < k,,
k, < g — 1 and not both k,, k, are zero, then

(k1 + k2)!
— IO

ki k! dp.

—ky L —kay —

J(@, ", 0, ") =
References for this congruence are given in the Notes in [6, Chapter 14]. We
shall extend this congruence to Jacobi sums of any number of multiplicative
characters of F, as follows:

THEOREM 2. For r>1 and O0<ki,...k,<qg—-1 with some
k; > 0,

_ _ (ki + -+ + k!
J(mpkl,...,(opk’)z /161" -k') mod p .

The simplicity of the statement of this generalization makes it somewhat
surprising that it does not seem to appear in the literature (such as that which
is mentioned in the Notes in [8, Chapter 5]).
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