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L'Enseignement Mathématique, t. 41 (1995), p. 141-153

JACOBI SUMS AND STICKELBERGER'S CONGRUENCE

by Keith Conrad1

Abstract. We present an extension of a classical congruence for Jacobi

sums of two characters to a congruence for arbitrary Jacobi sums. This

congruence is used to provide what seems to be a new proof of Stickelberger's

congruence for Gauss sums, as well as a new explanation for the appearance
of base p digits in Stickelberger's congruence. It is also shown that in fact the

Jacobi sum congruence and Stickelberger's congruence are equivalent.

Introduction

About a century ago, Stickelberger established a congruence for Gauss

sums over a finite field which has had useful implications for the study of
cyclotomic fields. A generalized version of a classical congruence for Jacobi

sums of two characters will be proven which is ultimately shown to be

equivalent to Stickelberger's congruence. In particular, this allows for a new
proof of Stickelberger's congruence and a new explanation for the form of the

congruence.
Before discussing finite fields, we will need to fix a way of representing

these fields and the multiplicative characters on them. Let p be a positive
prime, q pf for / in Z + We have the following diagram of number fields
and primes, where ^ lies over p,., g - q>(q - l)/f, and (sp,(sq_l e C denote
roots of unity with respective orders p and q — 1 :

QK?-i) Pi • • p£

Q p

*) Supported by an ONR graduate fellowship Mathematics Subject Classification
11L05, 11T24.
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Fix any prime p in Q(^_i) lying over p and let $ be the unique prime
in Q(Ç?-i, C,p) lying over p. Then Z[^_i]/p is a field of size q, and from
now on F^ denotes this field.

Let cop denote the Teichmüller character on F^, i.e. for a in
Fg (a e Z[^_i]), C0p(a) is the unique complex root of Xq - X satisfying
C0p(a) a mod p. Taking a ^q~\, we see that cop has order q - 1, hence

generates all multiplicative characters of ¥q. We will write cop(a) instead

of cûp(â).

Although F9 depends on p, we don't indicate this dependence in the
notation. Replacing Q by Qp would give only one prime over p in each

extension field, making our representation of F^ and definition of cop more
canonical, but we will not bother with this.

For 0 ^ a < q - 1, write the base p expansion of a as

a a0 + * * * + af-\pf~l
where 0 ^ at ^ p - 1 (not all at p - 1).

Throughout this paper, X^p is fixed. The (normalized) Gauss sum of a

multiplicative character % of F^ is defined by

G(x)=-ExWCF«/F'w.
xeFg

The (normalized) Jacobi sum of the multiplicative characters % i, %r of F^
is defined by

J(Xl, ,Xr)=(-l)'"1 I Xl(*l) • ••• •

x \, ...,xr e F g

Xi + • • + xr I

For basic properties of Gauss and Jacobi sums see [6, Chapters 8 and 10].

(Note: We always take %(0) 0. In contrast to the definitions above,
Gauss and Jacobi sums in [6] are not normalized by a power of — 1, and the

trivial multiplicative character is set equal to 1 at 0. These differences affect

no results we use from [6] in any essential way. Actually, our normalizations
make some formulas from [6] which we won't use look cleaner.) Using Jacobi

sums we will prove

Theorem 1 (Stickelberger). Using the same notation as above,

(Cn - l)ao+ "•+"/-1
G(cOp a) — mod^3ßo+ •••+*/-1 + 1

a0\ ' * af-1

The original proof of this congruence is in [10, Section 6]. A modern

reference for a proof is [7, Chapter 1]. In our proof, we use the following
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relation between Gauss sums and Jacobi sums in order to introduce the

factorials of the base p digits into Stickelberger's congruence in (essentially)

one step:

Lemma 1. If %i, ...,Xr are multiplicative characters on F^ with

nontrivial product %i • • %r, then

G(xi)-...-G(Xr)
G(X 1

• • Xr) •

J(X 1 » ...» Xr)

Proo/. See [6, Chapter 8, Theorem 3], noting that our weaker hypotheses

than those of [6] are sufficient since we assume the trivial character vanishes

at 0.

Proof of Stickelberger's Congruence Via Jacobi Sums

For %i, Xr multiplicative characters on Z[^-i]/p» it is easy to
check that

/(XI» ...» IrY /(XI» ...» Xr) mod p

so J(xi, Xr) 55 rational integer mod p. We will show below (Theorem 2)

that when some X/ is nontrivial, as an integer representative one can take a

certain r-fold multinomial coefficient.
In the case r 2 there is the following classical congruence: if 0 ^ kx,

k2< q - 1 and not both ki9 k2 are zero, then

/(œ~\ô)~*2)
+ ^' mod pp p kx\k2\

References for this congruence are given in the Notes in [6, Chapter 14]. We

shall extend this congruence to Jacobi sums of any number of multiplicative
characters of F^ as follows:

Theorem 2. For r ^ 1 and 0 ^ kx,..., kr < q - 1 with some
kj > 0,

J((ù~kl, co~*0 — — mod pp p
k\ \ • - kr\

The simplicity of the statement of this generalization makes it somewhat
surprising that it does not seem to appear in the literature (such as that which
is mentioned in the Notes in [8, Chapter 5]).
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