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JACOBI SUMS AND STICKELBERGER'S CONGRUENCE

by Keith Conrad1

Abstract. We present an extension of a classical congruence for Jacobi

sums of two characters to a congruence for arbitrary Jacobi sums. This

congruence is used to provide what seems to be a new proof of Stickelberger's

congruence for Gauss sums, as well as a new explanation for the appearance
of base p digits in Stickelberger's congruence. It is also shown that in fact the

Jacobi sum congruence and Stickelberger's congruence are equivalent.

Introduction

About a century ago, Stickelberger established a congruence for Gauss

sums over a finite field which has had useful implications for the study of
cyclotomic fields. A generalized version of a classical congruence for Jacobi

sums of two characters will be proven which is ultimately shown to be

equivalent to Stickelberger's congruence. In particular, this allows for a new
proof of Stickelberger's congruence and a new explanation for the form of the

congruence.
Before discussing finite fields, we will need to fix a way of representing

these fields and the multiplicative characters on them. Let p be a positive
prime, q pf for / in Z + We have the following diagram of number fields
and primes, where ^ lies over p,., g - q>(q - l)/f, and (sp,(sq_l e C denote
roots of unity with respective orders p and q — 1 :

QK?-i) Pi • • p£

Q p

*) Supported by an ONR graduate fellowship Mathematics Subject Classification
11L05, 11T24.



142 K. CONRAD

Fix any prime p in Q(^_i) lying over p and let $ be the unique prime
in Q(Ç?-i, C,p) lying over p. Then Z[^_i]/p is a field of size q, and from
now on F^ denotes this field.

Let cop denote the Teichmüller character on F^, i.e. for a in
Fg (a e Z[^_i]), C0p(a) is the unique complex root of Xq - X satisfying
C0p(a) a mod p. Taking a ^q~\, we see that cop has order q - 1, hence

generates all multiplicative characters of ¥q. We will write cop(a) instead

of cûp(â).

Although F9 depends on p, we don't indicate this dependence in the
notation. Replacing Q by Qp would give only one prime over p in each

extension field, making our representation of F^ and definition of cop more
canonical, but we will not bother with this.

For 0 ^ a < q - 1, write the base p expansion of a as

a a0 + * * * + af-\pf~l
where 0 ^ at ^ p - 1 (not all at p - 1).

Throughout this paper, X^p is fixed. The (normalized) Gauss sum of a

multiplicative character % of F^ is defined by

G(x)=-ExWCF«/F'w.
xeFg

The (normalized) Jacobi sum of the multiplicative characters % i, %r of F^
is defined by

J(Xl, ,Xr)=(-l)'"1 I Xl(*l) • ••• •

x \, ...,xr e F g

Xi + • • + xr I

For basic properties of Gauss and Jacobi sums see [6, Chapters 8 and 10].

(Note: We always take %(0) 0. In contrast to the definitions above,
Gauss and Jacobi sums in [6] are not normalized by a power of — 1, and the

trivial multiplicative character is set equal to 1 at 0. These differences affect

no results we use from [6] in any essential way. Actually, our normalizations
make some formulas from [6] which we won't use look cleaner.) Using Jacobi

sums we will prove

Theorem 1 (Stickelberger). Using the same notation as above,

(Cn - l)ao+ "•+"/-1
G(cOp a) — mod^3ßo+ •••+*/-1 + 1

a0\ ' * af-1

The original proof of this congruence is in [10, Section 6]. A modern

reference for a proof is [7, Chapter 1]. In our proof, we use the following
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relation between Gauss sums and Jacobi sums in order to introduce the

factorials of the base p digits into Stickelberger's congruence in (essentially)

one step:

Lemma 1. If %i, ...,Xr are multiplicative characters on F^ with

nontrivial product %i • • %r, then

G(xi)-...-G(Xr)
G(X 1

• • Xr) •

J(X 1 » ...» Xr)

Proo/. See [6, Chapter 8, Theorem 3], noting that our weaker hypotheses

than those of [6] are sufficient since we assume the trivial character vanishes

at 0.

Proof of Stickelberger's Congruence Via Jacobi Sums

For %i, Xr multiplicative characters on Z[^-i]/p» it is easy to
check that

/(XI» ...» IrY /(XI» ...» Xr) mod p

so J(xi, Xr) 55 rational integer mod p. We will show below (Theorem 2)

that when some X/ is nontrivial, as an integer representative one can take a

certain r-fold multinomial coefficient.
In the case r 2 there is the following classical congruence: if 0 ^ kx,

k2< q - 1 and not both ki9 k2 are zero, then

/(œ~\ô)~*2)
+ ^' mod pp p kx\k2\

References for this congruence are given in the Notes in [6, Chapter 14]. We

shall extend this congruence to Jacobi sums of any number of multiplicative
characters of F^ as follows:

Theorem 2. For r ^ 1 and 0 ^ kx,..., kr < q - 1 with some
kj > 0,

J((ù~kl, co~*0 — — mod pp p
k\ \ • - kr\

The simplicity of the statement of this generalization makes it somewhat
surprising that it does not seem to appear in the literature (such as that which
is mentioned in the Notes in [8, Chapter 5]).
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In our proofs of Theorems 1 and 2, we will view multinomial coefficients
as special values of polynomials. For t ^ 1 and ni} nt e N, define

* )-\ni, ntf
X(X~ 1) • • (X- ni -nt+ 1)

In particular, (0>* 0)

When t 1, this reduces (even in notation) to the binomial coefficient
polynomial, so whereas many people would write (for r ^ 2 and ni9 ...,nr e N)

(/?i + • • • + nr)
n11 - • nrl

as we write it as
'

n+n^\ having one less integer in the

bottom is convenient, as for binomial coefficients. The main advantage of this

notation is that in Z[[XÏ9 ...,Xt]\ one has

(1 + (YYl
\
xi'

ni, nt]

for all integers m.

Although the following two multinomial coefficient congruences are rather

general, they will each be used only once, and in special cases.

CI. For t > 1, choose ni,...inte N and de N with each

nt < pd. For be Z,

C+"')-( " j mod p
\ni9 ...,nt) \nl9

C2. For d ^ 0, t ^ 1, and m0, mt ^ 0 write

m0 Cq + C\p + • • • + cdpd, 0 ^ Ci < p - 1 for i < d ;

mj c0y + Cup + • • • + cdjpd, 0 ^ C/y < /? - 1 for i < d and 1 < j ^ t,

where cd, cdj > 0. Then

[ m°W C° )•••••( * )modp.
\M\, mtJ \c0i, Cot) \cd1, cdt)

To prove CI, work in ^p[[Xi9 ...,Xt]] and use the equation

(1 +*!+••+ Xt)b+Pd (1 + Xi + • • • + *,)*(! 4- Xf + • • • + xf)
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To prove C2, the condition on the leading "digits" cd,cdi, *..,cdt just
being nonnegative reduces the proof to the case d I. Now look at the
coefficient of X1 • • X1 on both sides of the equation

(i + Xx + • • • + xt)mo (i + Xi + • • • + xtyo(\ + x\ + - • • + xpt)ci

in Fp[Xi, ...,Xt]. In the binomial case (t 1), C2 is originally due

to Lucas [9], and is also in [4]. The general result (^ > 1) is due to
Dickson [2, p. 76].

Proof of Theorem 2. For any %, /(%) 1, so we can assume r > 1. Since

some kj > 0 and a Jacobi sum is a symmetric function of its arguments,
we choose kr> 0. We will let ai, ar_ i each run independently through
representatives for the nonzero classes of ¥g Z[t^_i]/p, say the complex
roots of Xq~x - 1. For s in Z, cöp(a) as mod p if a ^ 0 mod p or
s ^ 0 (we set 0° 1), so

/(cop k',...,top kr)

(- l)r"' I ©>""*'(a i) • • a>p~<:r"1(ar_i)cOp(l - a, - ••• - a
aj

l)r_1 Y ai k''••• ' a~_k[~'(l-at - - <xr-i)q-l~kr mod p

The only time laa 1'isn't zero is when - 1) ; - A,), when the
sum is q- 1 - 1 mod p. From 0 ^ kt - 1 and

- (q -1) < - kt«£ rii -k,^ n,< q-1 - kr <q-1

we see that (q~1) | («, - A:,) if and only if «, A:,. Thus,
if kx + • • • + kr.x > q - 1 - kr, we have J(G>~k> (op~*r) 0 mod p,
while if ki +• • + kr_x^ q -1 - kr,

rtj ^ 0

n\+ ••• + nr_\^.q—1—kj

(I <<-*<)•

7(©p-*',.^ 9 1 M(-i)
\ A^i,..., Arr _

r-l + t.-f.1)r_, mod -p
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If^i + ••• + kr-i > q - 1 - kr, this last expression equals 0, so regardless

of the value of kx + • • • + ^_l5 we have by CI that

k k (k\ ~t~ • • + kr

\ k\, kr _ i

(k i+ + kr)\
k\ • * kr\

mod p

Remarks. 1. Theorem 2 is not true in general when all kj 0,

since the Jacobi sum of the trivial character on Tq taken r times is

(1 - (1 - q)r)/q r mod p.
2. It is reasonable to ask if Theorem 2 can be proven in general if it is just

known for r 2. After all, there are recursion formulas relating a multinomial
coefficient to a product of binomial coefficients and a Jacobi sum of several

characters to a product of Jacobi sums of two characters. However, this latter
relation depends on hypotheses of nontriviality of certain characters which are

not part of the hypotheses of Theorem 2 (for example, J(x\ > Xi > X3)

precisely when X1X2 is nontrivial). Thus it would

likely be cumbersome to use this approach to prove Theorem 2.

Proof of Theorem 1. It is obvious for a 0, and see [11, pp. 96-97] for
the case a 1 (whose proof shows why one should expect the theorem to hold
for positive powers of co" \ not of cop:pf - 1 #F* is more closely related

to pd - 1 than to pd + 1). Now we may assume q > 3. For 0 < a < q - 2,

we have by Lemma 1 that

G{(ù~a) G(co0_1)
G((D~'a+l))

P T a r-\~ ^y(cop cop

and /(cop *, cop l) a + 1 mod p (hence also mod ^ß) by Theorem 2, so by
induction and the equation ord^(Çp - 1) 1,

(7 — l)ß
G(co~°) ^ — mod tya+l

a!

for 0 ^ a ^ p - 1 (or a < p - 1 if q p). If q p we're done, so

assume q > p, i.e. / ^ 2. Going from a p - \ to a p is & problem
because \ p and we don't want to divide by p in our congruence modulo a

power of We circumvent this with Jacobi sums.

For 1 ^ a < q - 1, some digit at is > 0, so co~a, co"0'^' are nontrivial.
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Then by Lemma 1,

G(ct)p ") G(cûp "° • •

G(co„-"°) • • G(a>;a'-ip/-1)

_G(coB-g°)---G(a)p-^-1)

the last equation holding since G(%") G(%) (see [7, p. 5]).

Since ord*p(a;!) 0,

(7 - l)io+ ' •' +«/-i
G«"0) • • G(co7a/-') — —mod ' •' '

•

p a0! * ••• ' af-\\

By Theorem 2 and C2,

/(co-»°, - (ß°+ +fl/"f/2_1) m0d P
p \ a0, ...,af-2pf~2 I

-( °° W V
\a0, 0,...,0/ \0,al9...,0J
1

Therefore

J(c0p a°,..., co~°/-1/,/"1) 1 mod

so we are done. D

Our method of proof shows that writing Stickelberger's congruence as

G(co~a)= n ~—— mod ^3ao+ ''+0/-i + 1

a il

isolates terms in analogy with Lemma 1. This gives a new explanation for the

appearance of base p digits in the denominator in Stickelberger's congruence.
There are more sophisticated explanations, cf. the proof of Stickelberger's

congruence via the Gross-Koblitz formula in [7, Chapter 15]. (Although both
the original proof of the Gross-Koblitz formula in [5] and the proof in [7] are
only done for finite fields of odd characteristic, the formula is also valid for
characteristic 2 since Lemma 1.1 (ii) in [7, p. 333] is valid for all ô > 0,

not just for 8 ^ 1 /(p - 1). Alternatively, in [1] Coleman gives a simple proof
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which he explicitly points out is valid in all characteristics. Thus a proof of
Stickelberger's congruence for all finite fields via the Gross-Koblitz formula
is justified.)

Proof of Jacobi Sum Congruence Via Stickelberger

We now want to show that not only does Theorem 1 follow from
Theorem 2, but Theorem 2 follows from Theorem 1, so the two theorems are

equivalent. Some preliminary results will be required before the (tedious) proof
is presented.

For ne N, write

n c0 + cxp + • • • + cdpd, 0 ^ Ci ^ p - 1

From [3, Chapter IX],

ordj,(«!) "-z~TTL—,(-p)"Lpw) c0! ' ••• • mod

Note neither equation requires cd ^ 0. We define

Sp(n)c0 + • • • + cd,Hp{n)c0! • • cd\

and note neither of these definitions requires cd ^ 0. One sees easily that for
any n e N, n Sp(n) mod p — 1, and for nx, nt e N,

/ (n i + • • • + nt) \ Sp(n i) + • • + Sp(n t) - Sp(n i + • • • + n t)
0IA •

For x e R, let <x> denote the fractional part of x. For b e Z, let b b'
mod q — 1 where 0 ^ b' < q - 1, so that (~~ï) 7- Define

sq(b) Sp{b')9 hg(b) Hp(b')

so sg and hq are just the extensions of Sp and Hp from {b:0 ^ b < q - 1}

by (q - l)-periodicity. From [7, p. 10],

sg(b)(p-l)I (-^7)
0</</-1 \q ~ 1/

Since ordçpKp - 1) 1, Stickelberger's congruence can be written for all a

in Z as

G(©;fl) l
s mod ^(^-1 )M*> hg(a)
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Lemma 2. For r,meZ +, and bi,...,breZ,
br\ ^ Ib\ + • • • + br

m

If b\ + • • • + br 0 mod m and some bj ^ 0 mod m then

+ ^ 1

Proof. Let bj b- mod ra, where 0 ^ bj < m. Then b[ + • • • + b'r^ 0,

so since x ^ <x> for x ^ 0,

— + •••+( — [+**•+ b'r I b[ + • • * + b'r

m m

b\ + * * • + br

m

If bi + • • • + br 0 mod m then {b[ + - - - + b'r)/m e N. If some

bj ^ 0 mod m then b) >0, so (b[ + - • + b'r)/m e Z +, hence

is ^ 1.

Corollary 1. Let 0 ^ kx,..., kr<q - 1 with k{ + • • • + kr ^ q - 1,

so r^2 and at least two k} > 0. Then

Sq{k 1 J 4* * ~f~ Sq(kr

> + * • ' + kr) if ki + • • • + kr fé 0 mod q - 1

>/(/?-!)

k >f(P~ 1)

Proof From above,

$q(k\) + • • • + Sq(kr) (/?—!) J]

if ki + • • • + kr 0 mod q - 1,

>q-l
if k\+ ••• + kr ^ q — 1

(K/£/- i \ \q — 1
+ • • • +

plkr

If kx + • • • + kr # 0 mod # - 1, applying Lemma 2 to ....pL, shows
that each addend is ^ I—1+

*J) with strict inequality when 0 by
hypothesis, since

i<7 - 1
+ ...+ kr

q- 1

^0 + • • + kr
~q^~\ > 1 ^ k\+ • • • + kr\

d~\ I

If ki+ • • • + kr0 mod q- 1 then by Lemma 2 each addend is ^ 1,
with strict inequality when / 0 if Art + • • • + k— 1.
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We now state a more general version of Lemma 1, with a different notation
that will be better suited for what follows.

Lemma 3. For kx, kr e Z with some kj ^ 0 mod q - 1,

G(oDp-^)-...-G(cop-^)

/(a> *0
G(œ„-(tl + "'+A») if ki + - • - +kr^0 mod q- 1

- G(cop • • G(cop kr) if ki+ * * * +kr=0 mod q- 1.

Proof. Use [6, Chapter 8, Theorem 3] and its corollaries, keeping in mind
the differences mentioned between that book and this paper on various
definitions.

Proof that Theorem 1 implies Theorem 2. We have 0 ^ kx,..., kr < q - 1

with some kj > 0, so if the second case of Lemma 3 holds, then r ^ 2 and

at least two kj are >0. From the multinomial coefficient manipulations at

the end of the proof of Theorem 2, if + • • • + kr > q - 1 then

{ki ~t~ • • • + kr)
0 mod p (*)

kx\ • • kr\

Thus to prove Theorem 1 implies Theorem 2 we are led to the following four
cases :

Case 1 : kx + • • • + kr > q - 1, k\ + • • • + kr ^ 0 mod q - 1

Case 2: kx + • • * + kr > q - 1, kx + • • • + kr 0 mod q - 1

Case 3 : kx + • • • + kr q - 1

Case 4: 0 < kx + • • • + kr < q - 1.

We will prove Theorem 2 from Theorem 1 by establishing the congruence
of Theorem 2 modulo *)3, since Theorem 1 involves a Gauss sum, which lies

in ZKf_j,y but not usually in ZK?_i].
In Cases 1 and 2, by (*) we want to prove ordçp(/(cûp cd~*0) > 0.

By both Stickelberger's congruence and Lemma 3,

ord^(/(cûp co -kr

sq(k i) + • •

in Case 1

Sq{kX) + ' '

I in Case 2,

+ Sg(kr) ~ Sg(ki+ • • +

+ Sq(kr) -f(p - 1)
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and in both cases the expression on the right is positive by Corollary 1.

To prove Cases 3 and 4, note by [11, p. 324] that (C,p - l)^-1 - pu,
where u 1 mod - 1), hence u 1 mod

In Case 3, Stickelberger's congruence and Lemma 3 yield

/((a"*', 1 1

• q t
• • -—^-^mod^ß

mod since 0^kt<q- 1

mod

1 1

'

H^kr)

— oxdp{k j + ••• + ord/,(fc/.!)

ki • • kr\

Since sq(ki) Sp(kt),

+sq(kr) _ l)^i+ ••• +kr-(p-l) (ordp(fc j + ••• + ord^U))

(Ç - \)(P~1} (f^T "(°rdP(^l!)+ "• +ord;p(M)))

JL-j- - ordp(k\ I •• krl)(- pu)p~l
So

/(co"*1, CO~kr)q(~pu)0Tdp(k(_ p)ordp(kli'...-krï)

^ " *,.• -*t mod*'
(-/KO*— ^ -

which implies by the congruence u 1 mod $ and by multiplication by
(q -1)3 (A-, + • • • + Ar)! that

f

/(CO"*1, ...,(0~kr) i-p)or/><*!!••••*>»)

(Atj + • • • + A:r)

Since

— p)ordp(k\! ' ••• M) mod Ç1 + (^- !)ordp((g- 1

1 + 0>- l)ordp((tf- 1)!) - (p- l)ordp(£,!• - ^!)
1 + q- 1 - SpCtf - 1) - ki - - kr+ Sp(^) + • • • + s„(kr)
1 _ f(p - 1) + sq(ki) + • • • + sg(kr) since 0 1

^ 1 by Corollary 1,
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we see

/(cop-\ (Dp*') • ^ mod <J3

so the congruence

gl q\
Hp(q) 1 mod pg"1 (-D)ordP(9l) P

settles Case 3.

Finally, in Case 4, Stickelberger's congruence and Lemma 3 imply that

/((Dp-*1, ..„(Dp-*')
^ *,(*!+•••+*') mod -j 5

(Çp ~ l)M^l)+ •" +Sq(kr)-sq(fcl + ••• +kr) hq(ki) ' • hq(kr)

so

J{m:\ kr) (k\ + • • • -1- kr)\ 1

mod *p,
i + ---+kry.\ v'((ki+ ••• +kr)\\ h- I 1 /(k\ + +kr)\\

(L,p—i) p( *>• - *'
since s^/:,) Sp(kj) and + • • • + kr) Sp(kx + • • • + /:r). Thus

/(co. k\ coö *r) ^ + +
mod <P

p p k, \ • • *r!
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