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JACOBI SUMS AND STICKELBERGER’S CONGRUENCE

by Keith CONRAD!

ABSTRACT. We present an extension of a classical congruence for Jacobi
sums of two characters to a congruence for arbitrary Jacobi sums. This
congruence is used to provide what seems to be a new proof of Stickelberger’s
congruence for Gauss sums, as well as a new explanation for the appearance
of base p digits in Stickelberger’s congruence. It is also shown that in fact the
Jacobi sum congruence and Stickelberger’s congruence are equivalent.

INTRODUCTION

About a century ago, Stickelberger established a congruence for Gauss
sums over a finite field which has had useful implications for the study of
cyclotomic fields. A generalized version of a classical congruence for Jacobi
sums of two characters will be proven which is ultimately shown to be
equivalent to Stickelberger’s congruence. In particular, this allows for a new
proof of Stickelberger’s congruence and a new explanation for the form of the
congruence.

Before discussing finite fields, we will need to fix a way of representing
these fields and the multiplicative characters on them. Let p be a positive
prime, g = p/ for fin Z+. We have the following diagram of number fields
and primes, where ‘B; lies over p;, ¢ = ¢(q¢ — 1)/f, and {,, {,_; € C denote
roots of unity with respective orders p and g — 1:

Qo1 p) PO B

| |
QCq-1) P ..t D

| |
Q D

1) Supported by an ONR graduate fellowship Mathematics Subject Classification
11L0S5, 11T24.
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Fix any prime p in Q({,_;) lying over p and let P be the unique prime
in Q(C4-1,C,) lying over p. Then Z[{,_;]/p is a field of size g, and from
now on F, denotes this field.

Let ®, denote the Teichmiiller character on F,, i.e. for a in
F, (a € Z[{,-1]), wy(a) is the unique complex root of X7 — X satisfying
®p(a) = a mod p. Taking o = {,_;, we see that o, has order g — 1, hence
generates all multiplicative characters of F,. We will write w,(o) instead
of wy(a).

Although F, depends on p, we don’t indicate this dependence in the
notation. Replacing Q by Q, would give only one prime over p in each
extension field, making our representation of F, and definition of w, more
canonical, but we will not bother with this.

For 0 < a < g — 1, write the base p expansion of a as

a=ao+ - +a;_p/t,

where 0 < ag;<p—1(notallag,=p—1).

Throughout this paper, {, is fixed. The (normalized) Gauss sum of a
multiplicative character y, of F, is defined by
— Z x(x)g;ngq/Fp(x) )

xqu

def

G(y) =

The (normalized) Jacobi sum of the multiplicative characters ¥, ..., %, of F,
is defined by

T ) S (=170 Y () e % ()

X1, X, €Fy

X1+ +x,=1
For basic properties of Gauss and Jacobi sums see [6, Chapters 8 and 10].
(Note: We always take y(0) = 0. In contrast to the definitions above,
Gauss and Jacobi sums in [6] are not normalized by a power of — 1, and the
trivial multiplicative character is set equal to 1 at 0. These differences affect
no results we use from [6] in any essential way. Actually, our normalizations
make some formulas from [6] which we won’t use look cleaner.) Using Jacobi

sums we will prove

THEOREM 1 (Stickelberger). Using the same notation as above,

(o — Do+ o

ao! EETTI /S

G(O)p_a)E mOdSBaO+"'+af—1+1.

The original proof of this congruence is in [10, Section 6]. A modern
reference for a proof is [7, Chapter 1]. In our proof, we use the following
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relation between Gauss sums and Jacobi sums in order to introduce the
factorials of the base p digits into Stickelberger’s congruence in (essentially)
one step:

LEMMA 1. If %i,...,%r are multiplicative characters on F, with
nontrivial product Y- ... * %r, then

G G
J(1seees %r)
Proof. See [6, Chapter 8, Theorem 3], noting that our weaker hypotheses

than those of [6] are sufficient since we assume the trivial character vanishes
at 0. [

G(%1 " e " %r)

PROOF OF STICKELBERGER’S CONGRUENCE VIA JACOBI SUMS

For %4, ..., X, multiplicative characters on ¥, = Z[{,_,]/p, it is easy to
check that

J(Xl? ceey Xr)p = J(x19 ey Xr) mOd p ’

so J(%1, ..., %,) = rational integer mod p. We will show below (Theorem 2)
that when some 7y ; is nontrivial, as an integer representative one can take a
certain r-fold multinomial coefficient.

In the case r = 2 there is the following classical congruence: if 0 < k,,
k, < g — 1 and not both k,, k, are zero, then

(k1 + k2)!
— IO

ki k! dp.

—ky L —kay —

J(@, ", 0, ") =
References for this congruence are given in the Notes in [6, Chapter 14]. We
shall extend this congruence to Jacobi sums of any number of multiplicative
characters of F, as follows:

THEOREM 2. For r>1 and O0<ki,...k,<qg—-1 with some
k; > 0,

_ _ (ki + -+ + k!
J(mpkl,...,(opk’)z /161" -k') mod p .

The simplicity of the statement of this generalization makes it somewhat
surprising that it does not seem to appear in the literature (such as that which
is mentioned in the Notes in [8, Chapter 5]).
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In our proofs of Theorems 1 and 2, we will view multinomial coefficients
as special values of polynomials. For # > 1 and n,, ..., n, € N, define

( X )_X(X—l)'...-(X—_nl—“‘—n,+1)
"y, s Ny - .

nl! ® e nt!

In particular, (OXO) = 1.

When ¢ = 1, this reduces (even in notation) to the binomial coefficient poly-
nomial, so whereas many people would write (for » > 2 and ny, ..., n, € N)

(ny+ -+ n)!

nl! T R n,!

as ("' 70", we write it as ()" ,"""); having one less integer in the

bottom is convenient, as for binomial coefficients. The main advantage of this
notation is that in Z[[X,, ..., X/]] one has

m
I+X,+ - +X)"= ) XXy
. ny, » Ny
for all integers m.
Although the following two multinomial coefficient congruences are rather

general, they will each be used only once, and in special cases.

Cl. For t>1, choose n;,...n,eN and deN with each

n;<pd. For bel,
b + p9 b
mod p .
i, .oy 0y iy .eey Ny

C2. For d>0,t>1, and mgy,...,m, >0 write

I

Mmy=cCo+cip+ - +cgpd, 0<c;<p—-1 for i<d;
m; =coj +cyp+ - +cegip?, 0<c; <Kp-1 for i<d and 1 <j<t,

where cg4,cqi 2 0. Then

mo Co Cd
S mod p .
My, ..., My Co1s +++5 Coyt Cdls o5 Cay

To prove Cl, work in F,[[X}, ..., X/]] and use the equation

A+Xi+  + X)) =0 +X + - +X)PA + X2+ -+ + XP9) .
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To prove C2, the condition on the leading ‘“digits” c4, C415 ..., Cq: Just
being nonnegative reduces the proof to the case d = 1. Now look at the
coefficient of X' - ... - X7 on both sides of the equation

A+Xi+ -+ X)mo=(1+X + -+ X))ol + XT+ -+ + X))o

in F,[X;,...,X;]. In the binomial case (+=1), C2 is originally due
to Lucas [9], and is also in [4]. The general result (> 1) is due to
Dickson [2, p. 76]. ~

Proof of Theorem 2. For any %, J(x) = 1, so we ¢an assume r > 1. Since
some k; > 0 and a Jacobi sum is a symmetric function of its arguments,
we choose k, > 0. We will let a4, ..., a,_; each run independently through
representatives for the nonzero classes of ¥, = Z[{,_,]/p, say the complex
roots of X?-'— 1. For s in Z,wy(0) =0 mod p if a0 mod p or
s >0 (we set 0°=1), so ’

~k -k
J(@y " 07

=(—-1)-1 Z (D;kl((ll) t et (Dp_kr_l(ar—l)wp(l -0 = = ar_l)q—l—k,
o

=(=D 'Yy - - a,_1)? 1% mod p
&)

11—k
Z (q ) (_1)r—1+n1+--'+n,_1 H (Zaf"‘k").

n;jz0 NiyeesNp— g Iigr-1 o4
npt-oo+n,_1<9-1-k,

The only time Y, o™ isn’t zero is when (g — 1)|(n; — k;), when the

sum is ¢ — 1= —1 mod p. From 0 < k; < ¢ — 1 and
—(@g-D<-kisnm-ki<m<qg-1-k.<qg-1,

we see that (¢—1)|(n;— k) if and only if n, =k, Thus,
if ky+ - +k_1>qg—-1-k,, we have J(cop_k‘,...,cop—k’)EO mod yp,
while if k&, + -+ + k,_, < g —1 - k,, |

- _ - 1-k,
Ty oy ) = (kq k )(_1)"”"1*’””"-1(—1)’“1modb
Ly ooy Kp— g
— q"‘l_kr (_1)k1+"'+kr—1
kiy..ookr—

B (k1+-"+k,—q)
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Ifky+ - +k._1>q—1— k,, this last expression equals 0, so regardless
of the value of k; + -+ + k,_,, we have by CI that
k1+ +kr
J@: ", .., o )= mod
‘“ " s oo Ky g
ki+ - +k)!
kil-... k!

Remarks. 1. Theorem 2 is not true in general when all k; =0,
since the Jacobi sum of the trivial character on F, taken r times is
(1-(0-¢g))/q=rmod p.

2. It is reasonable to ask if Theorem 2 can be proven in general if it is just
known for r = 2. After all, there are recursion formulas relating a multinomial
coefficient to a product of binomial coefficients and a Jacobi sum of several
characters to a product of Jacobi sums of two characters. However, this latter
relation depends on hypotheses of nontriviality of certain characters which are
not part of the hypotheses of Theorem 2 (for example, J(¥1, X2, %X3)
=J1, X2)J (612, X3) precisely when ¥ %, is nontrivial). Thus it would
likely be cumbersome to use this approach to prove Theorem 2.

Proof of Theorem 1. 1t is obvious for a = 0, and see {11, pp. 96-97] for
the case @ = 1 (whose proof shows why one should expect the theorem to hold
for positive powers of o, ' not of 0y:p/ — 1= #F;,< 1s more closely related
to p¢ — 1 than to p¢ + 1). Now we may assume ¢ > 3. For0 < a < q — 2,
we have by Lemma 1 that

G(w, ‘) G, '

G(OJ_(a+1))= — -
J(@y % o,

p

’

and J((x)p'“, oap_l) = a + 1 mod p (hence also mod ‘) by Theorem 2, so by
induction and the equation ordg((, — 1) = 1,

Cp— D

Gloy) = al

mod Pa+!
for 0<a<p-1(or a<p-11if g=p). If ¢q=p we’re done, so
assume g > p, i.e. f > 2. Going from a=p — 1 to a = p is a problem
because B | p and we don’t want to divide by p in our congruence modulo a
power of B. We circumvent this with Jacobi sums.

For 1 <a < g — 1, some digit a; is >0, so w,*, wp_“"pi are nontrivial.
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Then by Lemma 1,

G(@;) = Gy ® ... - @, =177
G, ") e G, 7"
T T(@ %, 0, T
B G((Dp—"‘)) co G, YT
S T(@y %, e, )

the last equation holding since G(x?) = G(X) (see [7, p. 5.
Since ordg(a;!) = 0,

(Gp = Dot rorm
ao! TR af_l!

G(m;"o)-...-G(wg"f-l)E mod P+ Far-1tl,

By Theorem 2 and C2,
ap+ +af_1pf”1

\ @, .er Qp_ap) 72

o) o o) Lo
\@,0,...,0) \0,ay,...,0/ "~ \0,...,0

=1.

- - f=1
J(@; %, @y, U P) =

. )modp

Therefore

J(w, “, ...,cop""f—lpf'l) =1 mod B,

so we are done. [l
Our method of proof shows that writing Stickelberger’s congruence as

_1 a;
G((Op_a)E H (Z;—p———)—mod%ao+"'+af_l+l

0gigf-1 a;!

isolates terms in analogy with Lemma 1. This gives a new explanation for the
appearance of base p digits in the denominator in Stickelberger’s congruence.
There are more sophisticated explanations, cf. the proof of Stickelberger’s
congruence via the Gross-Koblitz formula in [7, Chapter 15]. (Although both
the original proof of the Gross-Koblitz formula in [5] and the proof in [7] are
only done for finite fields of odd characteristic, the formula is also valid for
characteristic 2 since Lemma 1.1 (ii) in [7, p. 333] is valid for all § > 0,
not just for & > 1/(p — 1). Alternatively, in [1] Coleman gives a simple proof
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which he explicitly points out is valid in all characteristics. Thus a proof of
Stickelberger’s congruence for all finite fields via the Gross-Koblitz formula
is justified.)

PROOF OF JACOBI SUM CONGRUENCE VIA STICKELBERGER

We now want to show that not only does Theorem 1 follow from
Theorem 2, but Theorem 2 follows from Theorem 1, so the two theorems are
equivalent. Some preliminary results will be required before the (tedious) proof
is presented.

For n € N, write

n=co+tcip+ - +cp? 0<e;<p—-1.

From [3, Chapter IX],

n—{(cog+ - +cg) n! _
p-1 > (-p)erdplnh) =

ord,(n!) = Co! " ... cg! mod p.

Note neither equation requires c; # 0. We define

def def
Sp(n)écoJr e+ Cy, Hp(n)éco!-...-cd!,

and note neither of these definitions requires c; # 0. One sees easily that for
any n € N,n = S,(n) mod p — 1, and for n,,...,n, € N,

(n1+---+n,)!) _ Spn)+ -+ 8p(n) = Sp(ny+ -+ +ny)
= o1

ord, (

nl!-...~n,!

For x € R, let {(x) denote the fractional part of x. For b € Z, let b = b’
b b’ .

mod g — 1 where 0 < b" < g — 1, so that <q—1> =71 Define

5q(D) = Sp(D"), he(b) = Hy(b"),

so s, and h, are just the extensions of S, and H, from {b:0<b<q — 1}
by (g — 1)-periodicity. From [7, p. 10],

b
sq(b) =(p—1) ) <p_"> :

o<i<f-1 Vg —1
Since ordg (G, — 1) = 1, Stickelberger’s congruence can be written for all a
in Z as
G(w, ‘) 1

€, — 1)%@ = 7o) mod P .
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LEMMA 2. For r,meZ*, and b,,...,b, € Z,

<b,> <b1+ +br>
+{—=) > :
m m

If by+ - +b,=0mod m and some b;# 0 mod m then

Proof. Let b; = b;mod m, where 0 < b; < m. Thenb; + -+ + b; 2 0,
so since x = {x) for x > 0,

——
IS
—~——
+

+
——
I | &
v
Il

=

+
3

+

=
\
——

=

+
3

+

o
~—

If by+-+b,=0 mod m then (b;+ -+ +b))/meN. If some
bj#0 mod m then b/>0, so (bj+---+b])/meZ+, hence
is >1. [

COROLLARY 1. Let 0 < ki, ..., k,<q—-1 with k;+ -+ +k,>q — 1,
so r=2 and at least two k;>0. Then

f >s,(ky+ - +k,) ifki+--+k,#20mod g—1
DRI TR( ST REACE if kit 4k =0mod g -1,
>qg-—1
\ = f(p—1) ifky+ - +k,=qg—1.

Proof. From above,
ik ikr
Sq(kl)+"'+5q(kr)=(p_l) Z (<p 1>+"'+<p >)
o<i</-1\\qg—1 | q—1

Ifky+ - +k #£0 modhq — 1, applying Lemma 2 to p‘k,, ..., p'k, shows
that each addend is > <pl(k1;_”1. o
hypothesis, since

k kr k+ , 5% %
< 1>+...+< >= y +k>1> ki + + k, |
q—1 q—1 q—1 q—1
If ky+ -+ +k, =0 mod g — 1 then by Lemma 2 each addend is > 1,
with strict inequality when i = 0if k; + -+ + k, > g — 1. []

) » with strict inequality when i = 0 by
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We now state a more general version of Lemma 1, with a different notation
that will be better suited for what follows.

LEMMA 3. For ky,....,k, € Z with some k;# 0 mod g — 1,

Gy ¥ .- Gy ¥ _
G(mp_(kl-‘-.“_l-k’)) lf‘k1+"°+kr$—é0 mOd q_l

T, 1, w4 = 1
S G, ) .. G, ") ifki+ -+ +k,=0 mod g—1.

Proof. Use [6, Chapter 8, Theorem 3] and its corollaries, keeping in mind
the differences mentioned between that book and this paper on various
definitions. L]

Proof that Theorem 1 implies Theorem 2. We have 0 < k;,...,k, < g — 1
with some k; > 0, so if the second case of Lemma 3 holds, then r > 2 and
at least two k; are > 0. From the multinomial coefficient manipulations at
the end of the proof of Theorem 2, if k; + -+ + k., > g — 1 then

(ki + =+ + k,)!
kil k!

= 0 mod p . (*)

Thus to prove Theorem 1 implies Theorem 2 we are led to the following four
cases:
Casel: k;j+ - +k,>qg—-1,ki+ - +k,#0modg—-1
Case2: ki+ - +k,>q—-1,ki+ - +k,=0mod g -1
Case 3: ki+ - +k,=qg—-1
Case4: O0<k;+ " +k <qg-1.

We will prove Theorem 2 from Theorem 1 by establishing the congruence
of Theorem 2 modulo 3, since Theorem 1 involves a Gauss sum, which lies
in Z[C,-,,(,] but not usually in Z[C,_,].

In Cases 1 and 2, by (*) we want to prove ordsg (J (@, ', ..., @, ")) > 0.
By both Stickelberger’s congruence and Lemma 3,

[ sg(ky) + -0+ sq(k,) — sq(ky + - + k)
in Case 1

ordsB(J((on‘k‘, ey mp_k’)) =
Sq(kl) Rl Sq(kr) _f(p - 1)
in Case 2,




JACOBI SUMS 151

and in both cases the expression on the right is positive by Corollary 1.
To prove Cases 3 and 4, note by [11, p. 324] that ({, — 1)?~! = — pu,
where ¥ = 1 mod ({, — 1), hence ¥ = 1 mod P.

In Case 3, Stickelberger’s congruence and Lemma 3 yield

J@, ", 0. g = r mod B
(Cp_ l)sq(k1)+“'+5q(kr) hq(kl) hq(kr)
1

M

® s mod P since 0<k;<qg—1
Hp(kl) Hp(kr)

(— p)ordp(kit) ++ +ord, (k1)

kil k!

mod P .

Since Sq(kj) — Sp(ki),

(Cp _ l)sq(k1)+~-+sq(k,) — (Cp _ 1)k1+ ot k= (p=1) (ord (kD) + -+ +ord, (K, 1))

—1
(p-1) (% — (ord (e y 1) + -+ - +ordp(k,!)))

So
J(@, ", .., 07" q(— puyordsteat- o dee) (= p)orde k)
( )q—_i = kil k! mod ‘[ ,

which implies by the congruence u = 1 mod ‘B and by multiplication by
(g—D!=(k;+ -+ +k,)! that

!
J(@, *1, . o5 ) L LI oo (mp)erdptatie) =
(=p)7~!
!
(ky + + k) (= p)ordpkit-..-kr1) mod P11+ -Dordy((g-11)
kit-.. k!

Since

L+ (p—1Dord,((g - 1!) = (p— Dord, (k! - ... - k,!)
=l+q-1-8,(¢g—-1) -k, — -+ ~k,+ S,ky) + - + S, (k,)
=1l -f(p-1)+s5,(k)) + - + sq(k,) since 0 < k; < g — 1

> 1 by Corollary 1,
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we see
! ky+ -+ kp)!
-k —koy . q =( 1 r
J@p ™ 0y =l ke k) mod %,
(-p)7~!
so the congruence
q! q! _
71T Tyt = Hel@) = 1 modp
(-p)r-!

settles Case 3.
Finally, in Case 4, Stickelberger’s congruence and Lemma 3 imply that

J( 1, . o0k holky + -+ + k,
(O‘)p Wy ) — q( 1 ) mod P ,
(Cp _ 1)sq(k1)+~--+sq(k,)—sq(k1+---+k,) hq(kl) - hq(kr)
SO
J(@7 1, ..., o % ky+ - +k)! 1
(((jﬁl) d (kli"')'i'kr)! = ( ;('- -k ’) ‘ gl (k14 +kp)! mOd SB’
(Cp—_l) orP( kil k! ) B e Tt (- p) p("?ﬁfTT?ﬁ_)

since s,(k;) = S,(k;) and s,(ky+ -+ + k,) = Sp(ki + -+ + k). Thus

J(, 1, e ) = o mod B ]
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